[칼럼] 올해 평가원이 만지작거리고 있을 패
게시글 주소: https://ys.orbi.kr/00069001994
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보겸 천만이네 4
상승폭 진짜 미친건가
-
해령 확장 v가 아니라 판 이동v에 대응되는거죠? [판 이동v=해령 이동v+해령...
-
나는 모든 준비를 마쳤다. 와라 달콤한 시험이여
-
91인데 수능 때 1 가능할까요ㅜㅜㅜㅜㅜㅜ
-
배탈남 하…
-
언제나 80 81 84
-
90 95 99 100 95 ?? 어 이거완전..?
-
ㅠㅠ 또 나만 어렵지..
-
작수는 답개수로 밀어서 달달했는데..
-
???
-
님들은 잘만 보내지고 있나요?
-
영어 무물보 36
영어 공부법 무물보
-
1회 찍맞없이 88이였는데 2회 78임ㅋㅋ 씨벌 뭐냐? 더 쉬웠다는데
-
1등 47000 2등 44000 3등 39000 총 3명 추첨할게요 10시까지...
-
강x풀다가 이게 어떻게 1컷 88이 나올만한 시험지인가 싶고... 그런거 외에도 전...
-
화작 20분 독서론3분 독서 앞에 2지문 17분 문학+마킹 30분 나머지 시간...
-
혹시라도 모집정지 뜨시면 어쩔거임?? 그냥 이번년에 가실건가요? 아니면 내년까지 바라보시나?
-
뼈때리는 한마디 2
지금 이거 볼 시간에 실수는 지문 하나 더 읽는다
-
[주장] 그럼에도 불구하고 학생부 종합 전형이 존재해야 하는 까닭 21
고등학교 교사로 재직할 당시 동료 교사들 중에, 다른 대입 전형은 싹 다 없애고...
-
아수라 보면 6월 9월 모의고사 지문으로 공부하는데 왜인가요? 이미 나온거라 수능에...
-
뭐가나음 배고픈데
-
일단 나는 고등학교 1학년 때까지 유도/주짓수 선수부 생활을 하다가 천재들을 만나며...
-
기하 재능임? 5
중등 도형 포함
-
고전 쪽이 항상 시간을 많이 잡아먹고 안고쳐서 문학만 우기분 들으려는데 괜찮나요?...
-
기출난이도 2
240628 vs 241128 뭐가 더 어렵다 생각하나요 전 개인적으로 06
-
지구 서바 푸는데 해강 들어도 모르겟는건 걍 넘겨도 돼?
-
삼수할듯싶음... 10
정확히는 삼반수긴한데...씨발 ㅜ
-
교육청에 나왔던거 수능에 재탕 가능성 있냐? 5모에 낙은별곡 나왔잖아 근데 이게...
-
jpop추천 1
몽글몽글한 분위기가 참 좋아요
-
내일까지 갈지 안갈지 가정통신문에 체크해서 내야되거든요 오늘 쌤한테 현체안가면...
-
근데 난 허수였은디 84점 나옴(!!) 물론 내가 듣기를 다 맞을 가능세계는...
-
솔직히 수능전이라고 기세올린다고 미리답베끼고 학프? 가는사람들 무조건 있을듯 솔직히...
-
다 4점짜리 틀린다고 가정했을 때 머가 더 표점 잘 나옴?
-
오랜만에 영어 2
2시간 했는데 엄청 지치네 감이 다 뒤진게 느껴짐
-
드렁큰미하리
-
집가구 싶어 6
일하기 싫어
-
더프는 등급컷을 4
응시한 사람만 낸 등급을 봐야해요 아닌 실제(보정) 컷을 봐야해요? 응시한 사람것만...
-
3,4등급 계속 나오길래 안심했다가 요즘 자꾸 6등급 나옴... 그냥 풀고 오답만...
-
아 취한뎌 4
ㅋㅋ크
-
교재판매 종료됐다길래 혹시나 해서 서둘러 결제하기 버튼 눌렀는데 아무것도 안했는데...
-
아무것도 하기 싫어…
-
솔직히 수능때 2등급도 자신없음 수능 표본때문에 ㅈㄴ 불안하고 지금 내 실력도...
-
비록 수특, 수완이지만 듣보잡에서 배웠던 내용 토대로 다 맞추었음 좀 더 노력해서...
-
사실 그냥 내가 틀려서 열받은거긴 한데 적어도 해석을 물어볼거면 글자 근거로...
-
전북대 의대 될까요? 물지입니다
-
ㅠㅠ
-
과민성 대장 증후군 ㅜㅜ 약 먹는데도 그대로라 내일 더 사와야 할 거 같아요
-
닉변을해볼까요. 28
흠 앞에 수식어 하나 붙이는 식으로 할까 고민중
-
한번씩 뻘글쓰면 댓글에 "국어 누구 들음"이런 댓글보이던데 무슨밈이지 이거,,,
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ