대치동어둠의양적관계어드밴스드유리함수점근선궁극의얼티메이트해석법
게시글 주소: https://ys.orbi.kr/00036710382
이번 글은 편하게 반말로 함.
제목을 보면 알 수 있듯이 이 스킬 비슷한 무언가는 쓸 일이 어지간하면 없음.
지금까지 쓴 칼럼들은 어려워도 쓸 일이 꽤 있었는데 이번엔 쓸 일이 없는거 같음
쓸 일도 없는 스킬을 왜 칼럼으로 쓰느냐? 심심한데 기분이 좋아서 그럼
다음부턴 쓸모있는 칼럼을 올리겠음ㅎ;
(추가 : 아니 이거 어쩌다보니 메인왔는데 혹해서 남용하지 마세요 취급위험.. 어지간하면 불리하고 사설문제에 가끔 유리한느낌)
일단 이 방법은 내가 처음 생각한 풀이는 아니고, 모 머리좋은 고2학생이 알려준 풀이임. 걔 좀 천재같음. 아니 천재맞음 ㅇㅇ. 아무튼 이 방법은 상황에 따라 풀이가 매우 단축되지만, 상황에 따라선 풀이가 매우 늘어짐.
혹시 머리가 아주아주아주 비상한 몇몇 학생들은(ex : 이 풀이 알려준 학생) 써먹을 수 있겠지만 일단 나는 못써먹을듯(쓰지 말란말). 시작합시다.
화1에서 유리함수가 어케 쓰이는지 모른다면, 참고용으로 이전 칼럼을 보고 오면 좋을듯
아 근데 사실 아직 유리함수 잘 안쓰면 이 칼럼이 쓸데가 없나?
걍 아직 유리함수 모르면 좋아요만 누르고 가줘ㅁㄴㅇㄹ
이 문제에서 몰수 비를 그래프로 그리면 아래와 같음
근데 알다시피 유리함수는 점근선을 가짐. 지금 넣어준 B의 몰수가 m/a면 점근선인건 아는데, x축 점근선을 모름. 그 높이를 대충 k라고 잡자.
근데 이 k가 뭘 의미하는지 미리 생각해보면, B를 음의개수로 무한히 투입했을 때 생성물/반응물이잖음. 그리고 한계 반응물은 계속 B임
그러면 C의 개수는 음수로 달리고, A의 개수는 양수로 계속 달릴거임. 이때 C/A는 k이고, 2/a가 될 거라는걸 알 수 있음. 이해 안될테니 식으로 써서 보여주면
ㅇㅈ? 계수 비가 될거임.
암튼 나머지 설명은 밑에 그림으로 대체함. 투입한 B의 양이 2일때 분수 값이 4니깐..
즉 점근선의 교점에서 유리함수 점을 찍었을 때, 넓이가 같다는걸 이용해서 식을 세우는게 이 풀이의 핵심임
1) 점근선의 의미를 생각해서 점근선의 값을 구하고
2) 넓이를 통해 식을 세운다.
근데 보다시피 식이 훨씬 더러움. 심지어 투입한 B의 양이 3일때는 유리함수 적용도 못하고, 반응식 깡계산 해야함. 뭐 이런..
그래도 마지막 마무리엔 유용할수도 있음. 이렇게. 참고로 이 문제에서 m=9 a=4
사실 이렇게 보면 이게뭐냐..싶을텐데 사실 아래 두 문제 예시로 더 풀건데 이건 또 매우 잘먹힘.
왜 안좋은 상황만 보여줬느냐? 혹시 혹해서 유리함수 문제마다 이 풀이 쓰려고 할까봐. 눈에 팍 들어오는 직관적인 상황에선 가끔 유리한데, 대부분의 상황에선 불리하니깐 안쓰는게 좋음.
그래도 아주 쓸 일은 없는거 아닌게, 평소에 유리함수를 자주 그려서 푸는 편이고 계산 직관이 뛰어나고 수학을 잘하는 학생이라면 이거 써도 될듯. 근데 그러면 이미 20분컷 만점일텐데.. 뭐 살아남기 모의고사 25분컷 50점을 위해선 유용할수도 있음 ㅁㄹ
암튼 다음 문제를 한번 이걸 응용해서 풀어보자
풀이 1
풀이 2
솔직히 이 경우엔 꽤 쓸모있는 것 같음. 이렇게 넓이를 구하기 편하고 그림이 유리함수로 미리 주어진 상황에선 생각보다 꽤 쓸모있음.
혹시 이 스킬을 쓸 생각이 있는 학생이 있다면, 앞선 문제처럼 유리함수 점근선이 오른쪽에 있으면 쓰지 말고, 이 상황 처럼 유리함수 점근선이 왼쪽에 있는 상황은 꽤 쓸만한것 같으니 이 때 써보면 좋을듯.
마지막 예제
풀이(귀찮으니 부피=몰수로 두고 풀음)
이 문제도 되게 유용함. 마지막 마무리에서 일차함수 기울기를 이용했는데, 투입한 B의몰수/C의몰수를 평행이동 하고 미분하는 느낌. 이거 말고도 다른 사설문제들에 적용 해 봤는데 꽤 풀리는 경우 많음. 유리함수 그래프가 이미 그려져있거나 그리기 쉽고, 왼쪽에 점근선 있으면 해볼만한 것 같음. 더 확장 가능성이 있어보이기도 하고..
핵심은
1)점근선의 의미 상상 및 값 추론(물질의 개수가 음수가 되는것을 허용하고 무한으로 극한을 보내기, 한계반응물은 고정)
2)유리함수 넓이 이용/유리함수 식 이용
이거 두개. 혹시라도 쓸 생각이 있다면 충분히 많은 연습을 하고 쓰는걸 권장하고 이 풀이로만 문제를 풀고 정석풀이를 연습 안한다면 수능 당일날 위험할 수 있으니 정석 풀이도 꼭 연습해보길 바람.
끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅠㅠㅠ
-
고등학교 친구들 만나면 취준 한다고 자격증따고 대외활동하고 별별 돌아가는 내용 다...
-
흑흑
-
우울,한탄글) 4
우울 한탄
-
둘 다 합격하면 어디 가세요?
-
국어 절반, 과학 절반, 수학, 역사 대충 해놨는데 오늘부터 인터넷 끊고 하면...
-
근데 어떤 특정 직업군을 해도 진상 만날 확률이 대부분인데 4
왜 특정 직업을 하면 그걸 당연히 안 봐야한다고 생각하는 거지...? 당연히 집...
-
따흐흑
-
그래서집가면바로 코인부터해서 자산복구를할려고
-
안녕하세요 4
멸망한 히카르도 가의 부흥을 꿈꾸는 히카르도 코로나 입니다.
-
일주일만 놀자 책도 사고
-
이정도면 90% 이상 확정같은데 12/2일 이후에 발표나겠네...;; 얼마려나
-
올해 수능 언매 88 확통 92 영어 90 생윤 42 사문 50입니다. 내년에...
-
무물 27
무불
-
재능 vs 노력 이거 따져서 뭐가 좋은거임뇨..?
-
약뱃 받아놓길 잘했뇨 14
캬캬
-
현역 36241 > 재수 13121 반수하면 어디까지 보시나요 0
주변에서 다들 여기서 그만하고 그냥 만족해라 하긴했지만 와닿지가 않는 현...
-
초등학교 때까지만 해도 내가 언젠가는 노력해서 원하는 걸 전부 다 이루고 세계에 큰...
-
ㅖ
-
오르비 유저들의 생각이 궁금합니다.
-
내꿈이 바뀌는 중 나 사실 패션쪽에 재능이 있을수도 있지 않을까?
-
저도 트위터 하는데 13
시작한지 3달도 안 됐긴함 근데 트위터 한다고 해서 싹 다 병신은 아님...
-
허니 ㅇㅈ 4
반칙 아니냐..
-
언매 90 91 2
표점 증발해서 합쳐질일은 없겠죠?
-
SRT탑승 완료 8
창가쪽인거너무좋다
-
서강대는 복전이 자유라서 경영이나 컴공은 수강신청 엄청 힘들거같은데 실제로는 어떤가요??
-
최상위권 애들은 의치한약수 서연고 서성한 중경외시 다음 모르더라
-
수능 성적표는 온라인으로만 봐야겠어요 이것저것 하기 귀찮다
-
되면 나도 따서 꺼드럭댈래
-
예비고3이고 내신은 3.1 2.7 2.5 나오다가 이번 중간을 너무 못봐서 5까지...
-
문제 풀이 시간은 (발상을 떠올리는 시간)+(계산하는 시간)이다. 기똥찬 발상도...
-
이참에 +n 박아서 서연고서성한뱃 올클을 노려보는 건...
-
여러분들이면 어디가시나요 ??
-
뿌링클이에요
-
조금이라도 있었다면 이 비참한 삶 미련없이 버려버릴텐데
-
수시로 지방대 의대 합격하면 일반적으로 과외비를 얼마나 바들까요? 수능은 평소보다...
-
국어는 작년 9평 수능 올해 6평까지 백분위 쭉 100 9평 수능 1개씩 틀렸고...
-
‘뜨거운 바다’ 부른 11월 눈폭탄…서울 역대 세번째 많은 눈 0
밤 사이 또 다시 눈 폭탄이 떨어지면서 서울 등 수도권에 최대 40㎝가 넘는 눈이...
-
6모9모 현장응시처럼 문자오고 모교 직접가서 받는건가 군인인데 엄마한테 등본같은거...
-
제목 그대로요 대충 33(4)235
-
담주 금욜… 시간 빠르다
-
저만해도 250612: 현장 당시에 딱히 성질 감은 확실히 안옴 -> 그냥 체육하자...
-
세종캠인척하기 5
군대에서 빡통대가리짓 할때마다 스킬
-
생명이 빅똥 싸버림..하.. 건대 가고 싶은데 힘들 것 같고 높공으로 하면...
-
변표..? 1
과탐선택자가 나중에 대학에서 변표를 발표했을 때 지금보다 손해..?를 보는 일이...
-
글루따띠온
ㅁㅊ
음의 반응이라...
어떻게보면 화2를 끌어온건가
그런 느낌도 있고 화1을 뇌절의뇌절을쳐서 수리적으로 해석한 느낌
사실 이렇게 보는게 맞는듯
흠 좀더 찾아보고 올게요
아니 화1 머치동 강사들도 이런 스킬은 안 쓸듯...ㄷㄷ
wow..
저거 알려주신분 수학 고정100일듯;;
와 이건 진짜 신기하네 ㅋㅋ
생각지도못했다 ㅋㅋ
정신적으로 충격 받음 저게 뭐꼬
이. 이게 머노
누구는 1문제 푸는데 30분 걸리는데...
wow
밑에 예제 둘 다 깡계산으로 풀었는데 이게 능지차인가
당연히 저도 처음볼땐 깡계산..
화1에서 기울기도 땡큐한 건데 유리함수라... 대단하네요
뭔소린지는 모르겠지만 개추
한줄요약 : 그냥 생지해라.
안써도됨....
죄송합니다.. 생지러에게는 너무 어려워요..
물1 사세요...다항함수밖에 안 나오는 물1 사세요....
어림도없지 전기력 실계산문제!!
여러분 쉬운 물2하세요
이해는 못했지만 신기하니 좋아요 박고 갑니다
요즘에는 화학 문제 풀 때 '유리함수' + '점근선'까지 끌어와야 하는건가요?
어후... 타임어택이 예전보다 훨씬 심하겠네요.
아뇨 심심해서 쓴 글이고 이렇게까지 할 필요는 전혀 없어요
사실이런 풀이를 만들만큼 어렵게내는 과탐이 이상한거
오빠 제목이 너무 깐지나요
기출은 씹으면 씹을수록 새로운 맛이 나네요..