Farewell[1] : 초전도치
게시글 주소: https://ys.orbi.kr/00066251424
약간의 변심으로, 간단한데 임팩트 있는 스킬 뿌려 놓고 가겠습니다. 은퇴선물..?
제가 풀이 칼럼을 올리지 않은 시점부터 만든게 많은데, 다 끌어안고 가려고 했다만, 저한테 무슨 느낌의 스킬들이 있었는지 적는것도 나쁘지 않을 것 같아서요. 다 계산을 최대한 쉽고 빠르게 하는 방법론이었어요. 이 스킬은 과외 수업 도중 발견한 스킬로, 이름도 그 수업하던 학생이 이렇게 하자고 했습니다.
뭐 아무튼, length(Farewell)=3으로, 다음 글이 마지막 글입니다.
이걸 원래 쓰는 분이 계셨을수도 있고 아닐수도 있고.. 뭐 아무튼, 이제는 제가 글을 올려버렸으니, 산화수에서 산화수법으로 풀어야 하는 문제에 한해서 이렇게 풀지 않으면 손해가 생길겁니다. 원래 이렇게 풀던 분이 있던 없던, 이 풀이도 공론화가 된 풀이는 아닌 것 같기 때문에..
앞으로 이 풀이를 보면 어 초전도치 아니냐? 해주시면 감사하겠습니다.
중요한 부분이 있는데요,
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
이 방법은 초전도체입니다.
전하량 보존으로 풀 수 있는 산화수 문제의 경우 이 스킬을 사용하면, 전하량 보존을 사용했을때보다 계산량이 같거나 아주약간 큽니다.
이것만으로도 좋긴 합니다. 보통 전하량 보존이 너무 유리하거든요. 산화수법이 유리해 보이는데? 싶었는데 알고보니 전하량 보존이 더 유리했으면 지옥의 계산을 경험하신 학생들이 많을겁니다.
이해하기 쉬운 내용이니, 문제 하나로 끝내겠습니다.
그 전에 간단한 개념 설명을 하겠습니다.
우선 산화수법을 우리가 어떻게 사용하는지 봅시다.
산화수가 변화하는걸 화살표로 표현하고, 원자 A, B가 산화환원 반응에 참여한다고 생각합시다.
그럼 다음과 같이 표기할 수 있을겁니다. 다음 상황은, 원자 A는 산화수가 -1에서 3이 되고, 원자 B는 산화수가 4에서 2가 되는 상황입니다. 그러면 산화수와 계수를 맞추면...
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이렇게 표시할 수 있겠죠.
바로 일반화 들어갑니다.
A: a -> b (x m)
B: c -> d (x n)
이런 산화수 변화 상황이 있다고 합시다. 이 식이 성립하려면
n(c-d) = m(b-a) 가 성립해야 할 겁니다. (산화 환원 여부를 몰라도 부호만 반대면 되겠죠?)
전개합니다.
ma + nc = mb + nd
이 꼴이 나오는데요, 다시 위의 예시를 들고와서 이게 뭔 뜻인지 살펴보면..
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
일반적으로 알려진 방법 대신,
-1 x 2 + 4 x 4 = 3 x 2 + 2 x 4
이런 식으로 왼쪽끼리 곱해서 더하고, 오른쪽끼리 곱해서 더하고.. 를 확인하는 식으로도 산화수 매칭이 성립하는지 확인할 수 있습니다.
일단 이것만 보면 별거 아닌데요..
이항이 가능합니다.
(이래서 이름이 초전도치)
뭔 소리냐면
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이걸 A쪽은 -1을 이항하고, B쪽은 2를 이항합니다.
A: 0 -> 4 (x2)
B : 2 -> 0 (x4)
이러면 암산으로도, 이 산화수 매칭이 성립한다는게 확인이 가능하네요.
뭐 아직도 별거 아닌것 같습니다. 이 스킬은 문자가 포함되어 있을 때 그 진국이 나오는데..
이 문항 하나로 끝내고, 여러분들이 연습을 해 주시면 될 것 같습니다.
이 문제가 대표적인 "산화수법이 유리한 문제"인데요,
두번째 조건과 반응식에서 Y의 산화수를 확인하면 우선 다음과 같이 표현할 수 있습니다.
X : ?(m으로 표현됨) -> +n (x1)
Y : +n-1 -> +n (x3)
그리고 세번째 조건을 사용하면 다음과 같이 산화수 변화를 표현할 수 있습니다.
X : +3(n-1) -> +n (x1)
Y : +n-1 -> +n (x3)
여기서 한번 암산으로 어떻게 이항 하면 이쁘게 풀릴지 생각 해 보시는걸 추천드립니다.
(스포방지용 간격)
왼쪽에 n, 오른쪽에 상수를 몰아주는 편이 제일 좋습니다. 이러면 추가 이항이 안 생깁니다. 다음과 같이요.
X : 2n -> 3 (x1)
Y : 0 -> 1 (x3)
이제 (물론 암산으로 충분하지만)
2n x 1 + 0 x 3 = 3 x 1 + 1 x 3
이므로 n = 3입니다.
축하합니다. 이제 여러분들은 231114와 그 강화형 문제들을 암산으로 푸실 수 있습니다. 물론 굳이 암산으로 할 필요는 없고 위 처럼 정형화된 틀에서 이항시켜서 문제를 푸시면 됩니다.
한번 N제를 꺼내서 산화수법 문제를 풀어보면 231114보다 체감상 차이가 더 심할겁니다.
꼭 체화하고 쓰시길 바랍니다. 알고 모르고 시간차가 꽤 납니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내가 고백했으면 커뮤는 아니더라도 어디 단톡방에서 조리돌림 당했겠지...
-
파스타 시켰어요
-
반박 안받음
-
ㅇㅇ 여사친 한명 없는 모솔이라는거임
-
글 처음 써보는 0
ㅇㅈ
-
다음생엔 이타도리 유지로 태어나게 해주세요
-
안녕하세요 반갑습니다 잘부탁드려요!
-
짝사랑 14
항상 이런 마인드였는데 이런 짤이 있는게 신기했어요 ㅋㅋㅋ 이분 누구심
-
내가 수학을 조금만 잘했다면...
-
페이백 반 해드림 난 이정도로 애국자는 아니야
-
메이드카페에서... 이거 칭찬 맞지?
-
오늘부터 피죤투버리고 사귀기로 했어요 내일부터 짬짬히 애니도 볼게요!
-
1....
-
사문 공부 2
사문 지금 학원 다니면서 윤성훈 인강으로 집에서 복습하고 있음 근데 3모 전까지...
-
여자친구 ㅇㅈ 0
이파리가 너무 예쁘지 않나요••이름은 코미포라 밀드브레디 입니다 네이버에 검색하면 나오는 유명인임뇨
-
그 젖 문대 드립친 치뱃
-
나는 왜 잘 이용하지 못하는가
-
간절하지 않았던거 같음 지금은 간절한데
-
관동별곡? 나왔는데 전혀 해석을 할 수가 없음 ㅠㅠ 이건 뭘 해야 이해할수 있을까요 ???
-
1. 완자 개념강의- 필수본 - 플랜비(역학) - 3순환 -회독2....
-
아인슈타인,닐스 보어 빼고(6번,7번) 다 알파메일 얼굴 잘생김 그마저도 못생긴 얼굴은 아님 ㅇㅇ
-
컨텐츠 리뷰 언제 올리면 더 많이 보시나요? 1월 VS 2월 고민중입니당 1등급...
-
짝사랑 특 2
이루어질 수가 없음
-
자랑 글 10
점공 1등 먹음요 캬캬
-
대충 눈치보고 안될거같은 여자는 바로바로 포기하고 다른 여자를 노리도록 하자
-
고백받은썰 1
-
왜 긁히고그래 9
ㅇㄹㄴ
-
현역25수능 언미영물지 원점수 88 92 82 42 38 나왔어요(등급은...
-
띠따띠따띠따라또따 이 노래 듣더니 이것도 노래냐? 이럼 걍 너무 웃겼음..
-
술한잔 할래요 4
한잔해~
-
다들 뭐하고 사시려나... 모르겠네
-
대치러셀 바자관 0
어느 건물임..? 별관? 본관?
-
수험생이 되어서 당장의 이번 입시를 기대하지 못하고 내년을 기약하는 것이 스스로...
-
만약 5
건동홍을 다 붙었다 그럼 어디 갈 거임?
-
귀 기울여 듣지 않고 달리 보면 그만인 것을
-
얜 어떰?? 5
ㅇㅇ
-
총내신 4.09 권장이수과목 다 들었는데 c임뇨.. 걍 진로 과목 다 c… 등급은...
-
중경외시 이상으로 미적 기하 가산점 주거나 지원 불가능한 곳 있나용? 서울대랑...
-
짝사랑했던 애가 11
하던 게임을 따라서 하기 시작한게 재작년 5월말인데 지금은 좋아하지도 않고 게임을...
-
용산 가서 식물 살 남붕이 구합니다 코덱스의 세계에 입문시켜드리겠음
-
난 왜 인기 없음?
-
나만 짝사랑하는 줄 알았는데 해방촌가서 노을 질 때 책 읽자고 하면서 주변에 책...
-
여기 애들이 보는 여자 눈이 높은건지 커뮤 마다 다른게 신기하네 아 근데 거긴 찐...
-
5~6등급에서 2~1등급까지 빨리 올리고싶은데 단어 외우는건 잘하는편이라 워드마스터...
-
방학때 모의고사 0
방학때 1주일에 한번씩 모고를 풀려고 하는데 작년 고3 3월 모고부터 일주일씩...
-
안어울림 크아악
-
헐 천둥 1
소리 개크다 와우..
-
문법 필요없고 해석 위주로 듣고 싶어요
존경합니다 논화님 바로 개추 와바박 박았습니다
Goat...
ㅅㅂ 화학은 이런것까지 해야하는구나 역시 물리가 답이네
물리나 화학이나..
역시 수능 화학은
이런 기괴한거까지해야하나
잉 진짜 쉬운데 걍 이항하고 곱하면 끝나니깐..
화2 칼럼도 부탁드립니다
쉽고좋은데 댓글공작오지네요 저런거때문에 회학선택자 줄어드는거임
지금까지 올린 스킬중에 제일 쉬움ㅇㅇ...
그러면 화학이 ㅈㄴ어려워서 하면 안되는 과목같잖아요;
초전도치야 고마워!
진짜신기하네요
처음엔 어 은근 복잡하지 않나? 싶었는데 이항이 되는게 진짜 괜찮네요 좋은 스킬인듯 ㅎㅎ
초전도치야고마워
이게 개쓸데없는 지엽스킬처럼 느껴진다면 기출/n제 학습을 안해본게아닐까요
이거보다 쉽게 설명할 수 있는 방법도 없고 적용 방법도 간단하고 여타 강사들마냥 스킬 사용 조건 대충 규정해놓은 것도 아니고 스킬 사용시에 유의미한 시간절약이 가능하고
원래 과탐 영역에서의 스킬이라는 게 “훈련되면 특정 상황에서 무지성으로 적용”해서 시간을 절약할 수 있기 때문에 의미가 있는 것인데(평소에 사고력을 사용해서 푸는 데 걸리던 시간을 절약할 수 있으므로) 그 의미와 필요성에 대해 스스로 생각을 안 해보는 사람들이 생각보다 많음
미지수가 있더라도 이항한 결과를 적어서 세로로 계산하는 것보다 산화수 차를 바로 계산하는게 더 빠르지 않나요..? 위 상황에서도 산화수 차가 2n-3, 1인게 바로 보이고요..
저문제가 쉬워서 그럼