미분가능성-개념탄탄하신분
게시글 주소: https://ys.orbi.kr/0003073848
그림과같이 도함수가 저렇게 생겨있다면 x는 1에서 미분가능할까요?
우미분계수=좌미분계수=0 이므로 미분가능할껏같기도한데
x=1에서 미분계수 f'(1)=우미분계수=좌미분계수 아닌가요?
그럼 2=0=0 되버리는데
1.무엇이 논리적으로 잘못되는지 알고싶습니다.
2.또한 도함수가 저렇게 생겼으면 미분가능할까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜 난 아무 연락이 없지 떨어진 사람도 연락해주던데
-
22살남자이고 군수생입니다. 현재 부산대 컴공과에서 1학년 1학기만 다니다가...
-
뭐 아 기분좋다 이런거라도?
-
안녕하세요, 수능 국어를 가르치는 적완입니다. 수능 국어를 잘 보기 위해서는 기출이...
-
88점이 또 뼈아프다
-
마피아42 마렵다 12
재수하는 분들 언제부터 공부하심?
-
연논 인문 4
연논 자연만 재시험치고 인문은 그대로 가는거죠??
-
국어는 하기싫다..
-
첫 알바! 3
떨리네요.. 담주부터 카페로 출근
-
동덕여대 에타 근황 16
???: “아직 희망이 있어!!”
-
현 고2 국어 3모 4 6모 5 9모 4 11모 4 입니다 6모 끝나고 부터 강민철...
-
연세대는 계탔네 0
안그래도 대학 재정 빠듯한데 290명 450만원씩 13억 현찰로 쫙 땡기겠네...
-
고대유물 3 8
백인덕쌤 싸인도 받았음
-
나으 선택과목 1
언어와 매체, 미적분, 물리학2, 화학2 or 지구2 (끌리는 비율 9.5:0.5)
-
여기는 우박이에요 너무 아파요
-
연대도 못가고 문과지만 진짜 명문은 보법이 다르다
-
덮밥하고 찌개 시킬지 치킨시킬지 고민중..
-
정시인원 변화있나? 있으면 에반데
-
다른 건 모르겠고 교육부가 수능 교재 가격이나 정상화해줬으면 하는 N수생들은 갳우 4
교육 격차 해소 운운하며 더럽게 비싼 교재값 격차는 해소할 생각도 하지 않는 교육부는 #~#
-
너무 연락이 없어서 나쁜마음 먹은줄 알았다고ㅋㅋ
-
교육부 "연세대 2027학년도 모집 인원 감축 가능…책임자 엄정조치" 1
2025학년도 수시 모집 논술 시험 문제가 유출돼 논란을 빚고 있는 연세대가 다음...
-
1. 인문계는 해당사항 없음 2. 자연계만 해당사항 있음 3. 1차 시험 응시자만...
-
둘다 ㅂㅅ같음
-
의미없는건둘째치고 질문 3개에 아니요 아니요 아니요는 사실상 ㄱㄴㄷ문제 선지에...
-
민지 무희 0
진짜 뒷북이긴 한데 한창 난리났을 때 공부하느라 바빠서 이제 봤네요 왤케이뿌심...
-
인강 책들 4
솔직히 너무 비쌈. 진짜 심한거 가틈, 욕 나올 정돈데 오르비에선 착하게 살아야되니까 욕은 안하겟음
-
고대유물 2 7
다들 보는 고려대 논술 안내문임
-
수능을 너무 말아서 할 과목이 없어요 그렇다고 수능을 다시 한번 보기에는 에바고...
-
대학 면접 안가면 담임선생님이 제가 면접 안갔다는 사실을 아실 수 있나요?
-
고대유물 2 11
-
너무힘들어서 0
심장이랑명치에 칼꽂고싶어요
-
런하는거맞음? 가산5퍼에서
-
폭설 ㅅㅂ 2
학교안에 셔틀이랑 대중교통 다 못들어가게 해서 걸어가게 해놓고 휴강은 또 안해 ㅅㅂ...
-
고양이같은사람이좋 10
아
-
감기기운이 온다 4
마침 백수인데 집에서 쉬어야겠음요 럭키비키
-
텔그랑 낙지는 게속 돌리고 있긴 한데 표본분석이나 이런거 하기에 너무 처음 들어보는...
-
눈사람만들었어요 2
구라고 길가다 귀여워서 찍음
-
메가 사건터짐? 10
왜 불매함?어차피 안할거 다 알긴하는데 이유가 궁금하네
-
고대유물 발견! 11
그냥 고대 사진이긴 함
-
약속취소될 가능성 없음????
-
원래 환불 몇배로 해줬으면 돈 엄청 깨졌을텐데 논술2배로 뽑으니까 내년에 등록금으로...
-
몇달만에 재접했는데 길마가 되있음....왜 나한테 짬처리하는데
-
연논 vs 여행 0
4~10까지 여행 항공편, 숙소, 패스권 이미 지불
-
뻥임뇨
-
ㄴ첨가임뇨 0
사실 화작러라 잘 모름뇨
-
사수까지 해서 건대가는게 의미있을까
-
사람은 도대체 .... 뭐지다뇨
-
눈온다 0
첫눈이야 첫눈
-
1컷이 50이든 100이든 백분위가 같으면 최저 충족한 사람의 수는 같은 것 아닌가요?
ㅇ,ㅇ
도함수가 x=1에서 연속이 아닙니다.
즉, lim(x->1)f`(x) = 0 은 맞는데 f`(1)은 정의되어있지 않기때문에 lim(x->1)f`(x)≠ f`(1) 입니다.
f`(1)이 정의되지 않기때문에 f(x)는 x=1에서 미분불가능입니다.
1. 도함수 f`(x)가 x=1에서 연속이 아니기때문에 f`(1)=우미분계수=좌미분계수가 성립되지 않습니다
2. f(x)는 x=1에서 미분불가능합니다
헐ㅋㅋ(1,2) 점찍혀잇는거구낰ㅋㅋ왜못봣짘ㅋㅋ
연속이 아니네요;;.. 미분 가능하면 연속이다.의 명제의 대우는 불연속이면 미분불가능하다. 위의 그래프는 불연속이므로 미분 불가능.
그건 원래 함수 일때 아닌가요? 이건 도함수요
http://orbi.kr/bbs/board.php?bo_table=xi_orbi_mat&wr_id=21347
예전 오르비에서 답을 찾았네요
문레기라 이해는 잘 못하겠지만 결론은 도함수의 연속과 함수의 미분가능성은 관련없다 같네요
교과과정에서 구멍 뚫린 도함수를 다루지 않아서 연속이라는 더 큰 범위로 설명할 뿐 위 경우는 도함수가 존재하므로 미분가능합니다.
f'(1)=2
실제로 저런 도함수는 존재할 수 없습니다.
하지만 출제자의 내공 부족으로 저렇게 출제가 된다면 "미분가능하다."라고 판단해줘야 합니다.
왜냐하면 위의 박근우님 말씀대로 f'(1)이 존재하기 때문이죠.
저 그래프에서 알수있는것은 f'(1)=2 이기 때문에 좌미분계수(평균변화율의 좌극한), 우미분계수(평균변화율의 우극한)가
모두 2라는 것입니다. 글쓴이께서 계산한건 좌미분계수가 아니고 "도함수의 좌극한값"입니다.
댓글을 여기까지 내려야만 정상적인 답글이 보이다니 ㄷㄷ.. 정말 정확한 답변.. 저런 도함수가 존재할 수 없는건데 ㅎㅎ
즉
x=1에서의 우미분계수= lim(x->1+0) f(x)-f(1) / x-1
이고
x=1에서의 도함수의 우극한 = lim(x->1+0) f'(x)
인데 둘은 명백히 다르다는 것이고, 당연히 미분계수의 정의로 미분계수를 구할 때는 위의 정의를 활용해야하는것이죠.
되게 유명한 함수인데
f(x)
=
(x=0) 0
(x=/=0) x sin(1/x)
f(x)
=
(x=0) 0
(x=/=0) x^2 sin(1/x)
... 이런 것들의 x=0에서의 미분계수도 구해보고 도함수의 연속성도 확인해보고 하세요.
아 그러니깐 우미분계수가 도함수의 우극한과는 다른개념이며 명백히 f'(1)=2 이여서 도함수의 연속과는 별도로 미분가능하다는 말씀이군요.감사합니다
미분함수가 빵꾸가 뚫릴순 있어도 저렇게 미분값이 따로 존재할순 없어요 저런 그래프의 원함수 그려보세요 못그려요
그리고 빵꾸만 뚫리면 미분가능함
그림이 참 멋쩌열
교육청인지는 모르겠는데 실제로 저렇게 문제 나온적 있습니다. 그리고 답도 미분 가능하다 였고요. 저거랑 똑같은 함수였는걸로 기억나네요
f ' (1)=2 로 1에서 미분가능합니다.
기출에 출제된 바 있습니다.
4점짜리로 기억합니다.
저렇게 도함수 그릴 수 잇는 함수가 어떻게 생겻는지 궁금하네요 ㄷ
난만한씨가 잘 지적해주셨는데요.
대학교 2학년 해석학 시간에 Darboux의 정리(사잇값 정리를 보다 일반화한 것입니다.)란 것을 배우면
"이런 도함수는 존재할 수 없다"는 것을 이해할 수 있습니다.
만약 모의고사에서 이런 문제가 출제되었다면 출제자가 문제를 잘못 출제하신 겁니다.
다만 도함수가 불연속인 경우는 존재할 수 있는데요.
이 경우 함수가 대단히 심하게 진동해야 돼요.
보통 이런 함수를 가리켜서 병리적 함수(pathological function)라 부르죠.
미분계수를 정의할 때 등장하는 좌미분계수와 우미분계수가 일치해야 한다는 개념과
도함수의 우극한과 좌극한이 일치해야 한다는 것은 서로 다른 별개의 개념입니다.
미적분학을 열심히 공부하다보면 한 번 정도 이 둘을 명확히 구분하기 위해서 머리가 지근지근 아파야 합니다. 일종의 성장통이죠. ㅎㅎ