(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
게시글 주소: https://ys.orbi.kr/0008742407
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
급 궁금하네...
-
목시 vs s2 0
이번에 미적사탐으로 응시하려고 하는데 둘 중 어디가 괜찮을까요? 추천해주시면...
-
오르비를 끄겠다 3
진짜 잔다 지금 자야 내일 한 2시~3시에 일어남
-
어떰요? 수업 안 한다 뿐이지 강제성 재종급이에요?
-
영어 1이었으면 되는데가 도대체 몇개냐 ㅋㅋㅋㅋ 영어 감점 이정도로 많이 할 줄이야
-
잘자 오르비 12
-
나도 기만 기만하고 싶어..
-
1. 테-무에서 기존회원 신규회원 룰렛 이벤트함 2. 5만원 확정지급 링크 통해...
-
뭐친구?
-
학교가 공사를 한대서 20일날 이른 졸업을 했습니다. 3년간 수시러로 살면서 학교...
-
일어났어요 6
다들 자요?
-
1학년 1학기 학고->2학기 휴학 후에 반수 실패하면 자진 유급해서 다시 1학년...
-
고대식 660.1 한명만 빠지면되는데
-
애프터장은 쉽지 않구나..
-
서울대 진학사 1
어제 업뎃이후로 서울대 문과 추합컷이 많이 낮아진것 같은데 이유가 있나요?...
-
이건아직 모르겧음..
-
멍
-
나 없던 사이에 글댓을 몇개나 쓴거야
-
근데 확실히 감성이 많이 다르네 BL 느낌도 ㅈㄴ 나고 86가 ㅈㄴ 독특한듯
-
다자녀면 공군 1
얼마나 유리한가요? 영향이 어느정도인지 궁금합니다
-
교수님 안 주무세요?? 기습 계엄도 아니고 새벽 발표라뇨
-
선제리 아낙네들 2
먹밤중 한밤중 새터 중뜸 개들이 시끌짝하게 짖어댄다. 이 개 짖으니 저 개도 짖어...
-
군대갔다왔다고는 해도 03이면 내년수능보기는 너무 늦었겠지 그래도
-
크리스마스에 할짓없어서 옯비 보다보니까 ㅅㅂ 삼수생각 ㅈㄴ드네.......하아
-
자야지 4
-
좀 최신 애니인 사펑 엣지러너를 봤으니 암굴왕 같은 명작 틀딱 애니나 볼까
-
반수의 결과로 가치 있을까요? 중대가 더 높아졌긴해도 사회나가면 중경외시...
-
잘자요 4
다들메리크리스마스
-
병약미소녀 ㅇㅈ 23
은 구라고 그냥 ㅂㅅ임 펑
-
모두 잘자요 9
다들 행복한 이브 보내셨나요? 전 아싸라 늘 지내듯 지낸 것 같네요.. 모두 잘자고...
-
현역인데 여기 못가면 재수할 예정인데 합격확률 0퍼센트인가요? 7
ㅜㅜ..그리구 이해가 안가는게 최초정시 모집인원이 238명인데 저기 등수 안에잇는데 3칸 ㅜㅜ
-
산타랠리 에 숏을 쳐?
-
하루종일 오르비를 지킨 자의 훈장
-
에 전혀 관심 없는 건 아닌데 n이 늘어나니까, 연애 감정이 무뎌져요.. 연애...
-
기만글만 안쓰면 욕 안먹을 텐데
-
ㅂㅂ
-
안돼 가지마!!!
-
크리스마스에 여친없는 애들끼리 놀고있으니까 ㅈ같음이 2배 흐흐
-
저능부엉이
-
이제 자야돼 2
내일 또 보자 옯붕이들
-
zzz 2
-
(고려대)의대 면접 보는데 얼마 정도 시간이 소요 되나요?? 고려대 아니어도 한번씩만 답변좀...
-
ㅂㅂ
-
1. 테-무에서 기존회원 신규회원 룰렛 이벤트함 2. 5만원 확정지급 링크 통해...
-
이제야깨달아버렸다
-
감성이 다르노 결말이 너무 성급했단 느낌은 아무래도 이 애니가 10회라는 분량밖에...
-
논술 예비 받음 ㅋㅋ
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다