[Bin] 29번 삼수선으로 풀기.
게시글 주소: https://ys.orbi.kr/0008707755
<풀이>
구의 반지름이 2이고 정삼각형의 한변길이가 2root3 이므로 정삼각형은 구의 중심을
포함하는 걸 알고 있고, 또한 삼각형 ABQ 가 직각삼각형이기 때문에
삼각형 ABQ 는 어떤 원의 지름을 포함하는 삼각형
즉 구를 자른 단면에 포함되는 삼각형이고, 구를 자른 단면인 원의 중심은
구의 중심에서 단면에 수선을 내린 점.
해서 삼각형 ABQ 는 삼각형 APQ와 수직이므로
삼각형 ABQ 의 한 점에서 평면 APQ 에 내린 수선은 삼각형 ABQ의 높이가 됨을
알고 쭉쭉 풀면됩니다.
끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
택시타고 가는데 빠듯하다
-
여그로 ㅈㅅ 국수영사문지구 93 84 81 47 36 1 2 2 1 3 서성한 경엉...
-
1타 관계없이 자신한테 잘 맞는 강사 들으면 되는거 알구있는데그래도 추천...
-
어제 하고 싶은 말 다하고 쳐자서 내 이미지가.. 내 착한 이미지 돌려내..
-
ㅈㄱㄴ
-
가천의 고사실 0
그냥 정해진거 없이 가라는대로 가면됨?
-
맞다면 우리 주변엔 공룡이 아닌 것이 없겠지.... 우린 공룡들 속에서 살고 있다
-
가천의 201호 4
ㅎㅎ
-
다 줘 패야겠어
-
얼버기 4
좋은 하루 보내세요
-
얼부기 6
온앤온
-
그렇다고 30분 늦게 나왔으면 늦었겠지,,,
-
얼버기 4
깨면안되는데 깨버렸어요... 다시잠이안와...
-
왜깼지 2
-
누구 더 추천함?
-
걍 빈 자리가 없는데 최저가 어떻게 됐더라.....
-
얼버기 0
인나자마자 핸드폰 중
-
연대 현재상황 8
그냥 노답 이제 ㄹㅇ 스카이라는 단어도 한물간듯함 의치한약수가 이 스카이서성한이라는...
-
학교 때매 늦는 거 봐주나요..? 시대 강대 둘 다 전화로 물어봤을 땐 안봐준다고...
-
왜 고민하는 지 모르겠누? 강대 시대 둘 다 해봤고 독재도 해봤지만… 시대가… 아...
-
2년 째 듣고 있는 노래인데 진심 고트
-
이번역반포 0
세종대사수
-
대부분 육군들은 지원하면 무작위로 보직이 결정되던데 차라리 운전병을지원하면...
-
재밌겠군
-
확통 경우의 수 문제 나오면 경우 다 세서 답안지에 적어볼게요
-
저는 보니까 m=3 최소인 거 안 걸러냈음 21번은 a+b=11로 답 냈음 진짜 왜...
-
가천대학교 5
학교 좋다
-
좀 ㅈ같고 하 사람 만나기도 싫고 건강 박살내가면서 공부했는데 결과가 그러니까 난...
-
풀이는 다 기억하니까 답만은 써도되나
-
시대 강대 6
먼저 확통사탐이고요... 나이가 좀 있는 할미입니당 ㅠㅠ s2랑 시대 중에...
-
아마토포 쏘는거임? 으히히
-
늦은나이에 약대 기적적으로 붙게돼도 문제네
-
세종대로가자 0
사당역가는중
-
병신마냥
-
아 ㅈㄴ 졸린디 0
가는 길에 잠들거 같다는 이상한 느낌이,,,
-
얼버기 3
-
다리떠는거 정도는 참을 수 있죠? 예..
-
목적지는? 0
외대앞역.
-
작년 합격자 평균 75.4점. 올해는 작년보다 계산도 많고 좀 복잡한 편. 작년보다...
-
요약 : 만1세 메이져한 선천성 심장기형 수술후 대동맥 캐뉼라가 이탈하여 발생한...
-
밤샘 주술회전 시청 ㅋㅋ
-
의대증원분 대부분은 수시 지역인재 전형이라서 이미 수학 2-3등급 맞은 애들이 꿀...
-
얼버기 0
냥대 논술 두개재
-
내년 고3이고 고2 물1화1지1 고3 물2화2 선택했는데 수능 화2지1 할까요 생1지1할까요
-
ㅇㅈ 5
펑
-
군대에서 수능을 2번 보는데 , 군대 첫수능 보고 합격만하고 다시 군대인데 이...
-
ㅇㅈ 1
나만큼 한사람은 없을거야
-
비문학 문학 상관없이 추천좀여 라노벨x 수능교재x
-
노베인데
정말 사랑스러운 문제
시험장에서 수식으로 풀고 하늘에 우러러 부끄럼이 많아 낑낑대다가 기하로 푸니까 쾌감이 ㅋㅋ
저도 한번도 수식풀이는 해본적없지만 ..그래도 부끄럼까진 ㅋㅋㅋ
하긴 쾌감은 기하풀이죠
조금 뜬금없는데 수학 강사분들이 기벡에서 수식 풀이를 거의 안 다루시는 이유가 뭘까요? 답만 나오면 되는 것 아닌가...
기하적 풀이 연습 덜되있으면 시험장에서 못 떠올릴 수도 있을 것 같아서요 ㅠㅠ
수식으로만 풀리게끔내면 다들다루실거예요 ㅋㅋㅋ 그냥 그렇게 안낼거라는 믿음이죠.(사실 저도 거의 안가르침....)
수험생입장에선 못떠올릴일 없게 꾸역꾸역 연습해야죠뭐.. ㅠㅠ
삼수선으로 풀면서 B의 위치때문에 고민을 했었는데
B를 이렇게 잡아낼수도 있군요..ㄷㄷ
하나 배워갑니다. 감사합니다.
넵 열공하세요!
아 저게 삼수선이구나 하;; 풀때 삼수선 생각이 안나서 그냥 제2 코사인 법칙 썼는데 틀렸어요 쩝
저도 이렇게 풀었는데요... 저기 빨간색 삼각형에서 빗변의 길이를 구하려고 BP 길이를 파푸스의 정리로 구했는데
BP길이 다른 방법으로 구하는 방법이 있을까요...? 아니면 안 구하고 푼다든지..?
빨간색 삼각형의 밑변길이를 쉽게구할수있어용 AB길이와 빨간색삼각형 높이에서 피타고라스로 구할수 있죠 그다음에 정삼각형이니 사인60도 해주면 되용. 그 후 빨간삼각형 빗변은 피타고라스로..
저기 죄송한데요 ABQ가 지름을 포함한다는게 중심을 포함한다는 건가요??
이해가 잘안가네요...
네 직각삼각형은 무조건 원의지름를 포함해야하고 그럼 그 원의 중심도 포함하겠죠 (구의중심x)
음...ABQ 와 APQ 가 수직인건 왜그런건가요 ㅠㅠ
구의 중심에서 원의 중심에 수선내릴 수 있는데 이 때 원을 포함하는 평면과 구의중심~원의중심이은 선분은 수직이죠.
구의중심에서 원의중심에내린선이 수직인거는 알겠는데 그냥 지름이라는 선분에 대해서 수직인거지, 그 평면에 수직이라는것도 알수있나요????
당연히 수직이라고 생각하고풀었는데 다시생각해보니 잘모르겠어요ㅠㅠ
저도 왜 ABQ 와 APQ가 수직인지 모르겠어요 ㅜ
ABQ에서 AQ가원의지름이고 그중점에 구의중심에서의 수선의발이 떨어지는건 알겠는데요 그렇다고해섲AQP가 ABQ와수직인건 아니지 않나요? 그냥 구의중심에서의 수선이 단면인 원의지름과 수직인거지 자른단면인 원이 비스듬히 짤려있지 않다는건 어떻게 파악해야하나요ㅠ
비스듬히 잘려있으면 원의 중심이 다른곳에 위치하지 않나요?
저는 그렇게 이해했는데 아닌가...
네맞아용
아 그러네요... 감사합니다