풀만한 수열의 극한 문제 하나 드립니다~
게시글 주소: https://ys.orbi.kr/0008629473
답.txt
제가 만든거 아닙니다..그래서 퀄리티도 그렇게 나쁘지 않을겁니다..
원문링크는 아래와 같습니다.
https://www.artofproblemsolving.com/community/u296133h1220663p6119372
링크 댓글에 제가 허접한 영어실력으로 풀이를 달긴 했는데 저의 작문 실력을 보이고 싶지 않으니 그냥 무시하시면 됩니다..답은 첨부파일에!
(링크가 뭐 엄청 대단한 문제처럼 돼있는데 실상은 그렇진 않은 것 같습니다..)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
??
-
경북대로박박간다 0
박박
-
ㄹㅇ수능타이머인가
-
(서울대 커뮤니티 스누라이프) 서울대 25학번 오픈채팅방을 사전 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
피곤한 아침 13
-
충격적이게도 진짜임
-
18학번으로 정시 지방교대 입학해서 교사 3년차에 군대에 와있는...
-
암튼 가는 중
-
면접 준비하고 있는데 질문하실 거 같아서.. 의대 정원 증원 말고는 또 없을까요?...
-
D-355 0
기릿?
-
사문 3
요즘 타임어택 어떰
-
기상 6
-
할 수 있습니다!
-
고속 누백 라인 1
백분위합 밑이 누백인가요 아니면 표점합 밑이 누백인가요?? 그리고 저정도 누백이면...
-
션티vs이명학 0
대성패스 있고요 영어선생님 아직못고르고있는데 두 선생님분들 해석 스타일이 어떻게...
-
권용기 한명만 들으려고 대성패스 결제할정도로 메리트가있나요?
-
공군: 복무 기간이 육군보다 3개월 더 기니까 3개월동안 후회함 육군:18개월동안 후회함
-
부대 수험표 0
부산대 수험표 거기서 뽑을 수 있나요? 집에 두고 옴;;;
-
1월 1일 지나도 졸업증명서 필요한가요 ㅠㅜ
-
학생증 ㅇㅈ 11
신학생증 너모 예쁘고… 이건 똥구데기 기존학생증ㅋ
-
진짜 개병신직장일수록 우리 직장에 ~대학 몇명있다 이딴 개소리 엄청 함 아니 시발...
-
얼버기 4
얼리버드 기상
-
주말 통삭제되는게 진짜 말이안됨
-
작년,재작년에 대강 예비 50번까지 돌았는데 올해 최저 3합7 생겨서 예비 덜...
-
요약 : 놔두면 어차피 죽는 6살 장중첩증 소장괴사 환자를 수술했으나 안타깝게...
-
세지1등급, 지구2등급 가능할까요? 세지는 1등급 뜬다하면 백분위 97 이상...
-
화작미적물1화1 91 98 1 77 70(메가기준) 인데요 ㅠㅠ 이대 컴공 논술...
-
저 사람 왜케 좋지 10
사랑에빠짐
-
한줄요약 : 장이 썩어들어가 당장 죽기 직전인 신생아를 일반외과 의사가 수술해서...
-
이거 메가 경쟁자 대비 성적분포로 전체 채점결과를 알순없나? 3
본인 원점수를 조정하면 그 원점수에 따른 경쟁자의 성적분포가 나오는데 그럼 내...
-
언매, 미적의 메가스터디 채점자 평균치의 상대점수는 대략 비례하는 경향이 있음. 내...
-
그냥 따라하기만 함
-
어디가 더 좋을까요? (참고. 한양대 전기는 전자공학이 아님)
-
얼버기 5
죠은 아침
-
ㅈㄱㄴ
-
새벽감성노래 1
이미새벽은지나갔지만
-
뭔가 위에 대학 이름이랑 같이 붙어있으면 너무 위에 쏠려있는 느낌서울대나 경희대처럼...
-
기상 완료 알바 가기 시러
-
진짜 인재 놓친거다.
-
오르비 망했나
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 3
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 3
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
코시수열은 교육과정 아득히 바깥..ㅠ
이 수열은 굳이 따지자면 코시수열이긴 하지만, 왜 그 말씀을 하시는건지요?..
엡델 안쓰고 교과과정 내에서 어떻게 답을 구할 수 있을지 잘 모르겠네요. 풀이 보여주실 수 있으신가요?.?
그냥 대입해서 계산하다보면 x4, x5의 절대값이 1/4보다 작습니다. f(x)=x^2+x/2라고 할 때, x2n, x(2n+1)의 절대값이 a보다 작고 a가 1/2보다 작으면 x(2n+2), x(2n+3)의 절대값이 f(a)보다 작음을 절대부등식을 통해 할 수 있습니다. n이 1씩 커질수록 절대값 제한에 f가 덧붙여지고, 이때 링크의 제 풀이에서는 f가 덧붙여지는것을수열로 표현했는데, 여기에 f가 붙을수록 0에 수렴함을(말로 표현하려니 이렇게 밖에 안되네요..) 증명할 수 있습니다.(이는 등비수열에서 공비가 1보다 작으면 0으로 수렴함, 샌드위치 정리에 의해 증명되지요.) 절대값 제한이 0에 수렴하니까 결국 샌드위치 정리에 의해 xn자체도 0에 수렴하게 되지요. 링크의 풀이에는 제가 엡델을 썻는데 그냥 제가 입델을 좋아해서 쓴 것이고, 굳이 쓸 필요는 없다고 생각합니다만...
샌드위치가 먹힐 줄 몰랐네요. 감사합니다