수학 자작 3문제 심심한 사람 풀어보셈
게시글 주소: https://ys.orbi.kr/0008354037
3번째는 기출 표현바꾸긴데 왠지 오류 있는듯 한 느낌이...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
한달만에 완강 ㄱㄴ?
-
아직도 이해가 안된다 20
안읽씹의 심리
-
다들 그럼 뭐하는건지 쓰고나가셈
-
댓글 등의 반응은 현저히 줄어드는데 조회수는 개빨리 늘어남 ㅋㅋㅋㅋ 뭔가 있는 듯
-
중기:이거 불법입니다!
-
요즘 오르비는 다들 일찍 자는 바른 어린이들이라 3시에 하면 또 재미 없음 ㅋㅋ
-
영어 2,3 등급 차이 많이 심한가요? 예비 고3인데 그냥 영어 2등급까지는 띄울...
-
연애하고 싶다
-
고2인데 올해 모의수능 봤을때 물리3(찍맞1개) 지구5(실수 많이 함..서바 풀면...
-
.......
-
고3 때 김동욱 일클 조금 들었었는데 그때는 조금 추상적으로 느껴졌거든요(방식은...
-
진짜 오랜만에 하는 ㅇㅈ인 듯 ㅋㅋ 차피 어릴 때라 신상 털릴 일은 없어서.. 오랜만에 ㅇㅈ해봄
-
언매 0틀 87점인데 3등급 뜨면 진짜 저는 이 세상에서 존재하지 않을지도...
-
경희대 될까요?
-
모기야 제발 3
잘라는데 앵앵거려
-
내전휴ㅡ번호어
-
아나타모~하야쿠낫테네에에에에~
-
뭔가 요즘 그냥 11
내 무능함에 삶 자체의 동력을 잃은느낌
-
ㅇㅈ 2
그렇습니다
-
킁킁
-
뭐지 진짜
-
다 열심히 연계 공부했는데 저 셋중에 하나도 안 나온 게 너무함 이동하는시간...
-
ㅇㅈ 6
영정사진 ㅇㅈ
-
ㅇ 2
-
95인지 97인지 잘 모르겠음 37이랑 41 틀렸는데 41을 2랑 3이랑 고민하다가...
-
팔로우 쌀먹을 시전하려는 나쁜 인간들!
-
당연히 수학황은 아니지만 낮은 등급대이신 분들꼐는 제가 겪은 시행착오가 조금이라도...
-
후회 하고있어요 3
우리 다투던그으날
-
심찬우 강민철 김승리 … 고민됩니다ㅜ
-
ㅇㅈ 막차 10
펑
-
진짜 금시초문인데 또 완전 개소리같진 않아서 경험자분들 와서 알려주셈
-
바로.. 수능 샤프 모으기 내년엔 무슨 색일까?
-
서울대 체대 1
수능끝나고 체대입시 준비하면 현실적으로 불가능한가요? 서울대체교과 넣고싶은데 입시...
-
여러분들은 무엇이 문제라 생각하십니까 512분의 조사동안 무엇이 들통난 걸까요
-
1명이 중복으로 다는 건 하나로 취급함 사회실험
-
모두 잘 살아라 5
난 잘 못살겠다 장례식은 지금 열음 굿다이노
-
ㅇㅈ 3
외접
-
난빌런 << 이새기는 걍 노력을 안함 ㅋㅋ
-
아일릿에 입덕해보는게 어떨까요?
-
성공 여부도 진짜 중요한데 그거 말고 실패 했을 때 손 털고 나가려면 최선을...
-
난 딱 두 번 그래 본 적 있음 딱히 그 사람한테 얘기하진 않았었는데... 흠
-
전에도 덕질 몇번 해봤긴 하지만 올 초에 어떤 가수에게 정신이 넘어가고 진짜...
-
인설의 목표 사반수 선택과목 추천좀요 국영 그럭저럭 하고 수학은 1컷에서 중반정도...
-
더코 왜필요함? 14
확인하는법 몰라서 가만히 있다가 오늘 알았음ㅋㅌㅋㅌ 7000정도라고 뜨는데 이거로 뭐함?
-
쎈+뉴런 조합이 은근 좋은거같음 뉴런 자체 문제가 조금 부족한것도 있고 난이도...
-
과탐2개봤으면 4
강대 시대같은 곳에 인문전형으로 지원 안될까요? 25수능 과탐 두과목 봤고 둘 다...
-
몇명있았을까
-
ㅇㅈ 2
완
-
인스타도 그냥 내가 맞팔하고싶은사람만 하면 안되나? 싶음 N수할때 나한테 연락해준...
-
이거 가시나요?
마지막문제 밑에서 4번째줄 이해가...
f (a)가 하나의 상수로 취급해서 k로 치환하면
x=k에서 함숫값=우극한인데 좌극한과는 같지않다
그래프로 표현하면 x<k은 y=0 x>=k 에서는 y=1
요런게 예가 될 수 있겟져
그런거라먄 좌극한부분 g (x)가빠잤네요 그래도 답은 모르겟다는 ㅋㅋ 모든 g (f(x))가 좌극한에서 끊어지는데 a에선 연속이라....
마지막에g•f (t) 함수에서 x=a 일때 연속인데 x가아니라 t인가요?
결국 합성함수 f 에서 g로 가는데 좌극한이 되면안되니 우극한,함숫값으로만 식이 결정되야되고
따라서 f (x)가 x=a에서 좌극한,우극한 취했을때 양쪽에서 둘다 감소하면서 떨어져야 f (a)+가 되요
극솟 값찾는 건데 이차함수 y=x^2에서 원점이 꼭짓점이잖아요 딱 그모양 생각하시면 됨
미적분 안배우셧으면 어려울수 있을듯 함수의 극한같지만 사실 미적분 문제에요
아 13은 12345254321
14는 12345454321 풀었습니다
첫번째문재는 아직 미적분안배워사 패스
네 ㅋㅋ 정답이에여 근데 14번 식 어떻게 세우셨나요? 원래 곱셈정리로 변AB구하고 점~직선으로 높이구하게 하는게 의도 였는데 친구들한테 풀어봐라 하니 다 다르게 풀더라고여..
13번도 계산 안하고 답 바로 보이셧나요?
1사분면 삼각형만봤을때 a3이랑 a4의 중점이 t/2,t/2이므로 원점과 직선사이는 t/2루트2
a3 a4 의 x값차이는 곱셈정리로 구하고 거기에 루트2 곱했네요
13번은 계산안했습니당
네 ㅎㅎ 완벽하게 푸셨네요 난 또 곱셈정리 생각하는게 너무 어려운가 싶었음 ㅋㅋ
역시 오르비가 다 수준이 높아여
맨 처음 문제에 (나)가 성립하려면 g(x)>0에서 항상 감소하고 g(x)<0에서 항상 증가해야하는데 (다) 때문에 그건 불가능 하기 때문에 일일이 넓이를 비교해주란 문제인가요? 출제의도를 잘 모르겠네요
(나)조건 부등식 왼쪽식이 정적분~급수에서 오른쪽 높이잡기 한거고 오른쪽이 정적분이라 정적분이 크려면 감소함수여야 하고
a가 양수만 되니까 x>0에서 g(x)는 감소함수다 라고 이끌어내길 바랐는데여
음..그렇기 할라했으면 부등식에 정적분 구간을 위끝아래끝에 임의의 양수 두개가 다성립한다 라고 해야 맞는건가요
극값이 존재하고 최고차항이 음수인 삼차함수 생각해보면 쭉감소하다가 증가하는 구간에 a가 걸쳐있어도 저 식 만족 할수 있는것 같네요
'임의의 서로다른 두양수 a,b에 대해 a~b까지 오른쪽 높이 잡기 한것보다 인테그랄 a~b가 항상 크면 그함수는 양의실수에서 감소함수이다'
이렇게 표현해야 하나요
일정한 구간에서 저게 성립한다는걸 보여주는게 나을 것 같아요.. 지금 조건 그대로 가면 감소함수라는걸 뽑아낼 수 없어요..