미적분1 자작
게시글 주소: https://ys.orbi.kr/0008341702
오류있으면 지적점여
+수정
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어떤 문제는 도덕 배운 초등학교 고학년들도 풀 수 있는 수준인데 어떤 문제는 서울대...
-
교육개혁에 대해 알아보자. 그만 알아보자.
-
오밐추 1
행복한 하루 되세요!
-
clothing20snu 대성 커피 먹구가 ~~ ⸝⸝> ̫ <⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
솔직히 지금껏 1도 체감 못하고 있다가 가족이랑 친한 후배들이 수능선물,응원 메세지...
-
ㄹㅇ 어지럽네 ㅋㅋㅋ
-
+ 국가장학금 폐지 난 걍 자퇴할듯
-
수학은 괴물들이 많더군요. 어지간한 난도의 시험은 시간이 남는 괴물들.......
-
구라안치고 망하지않아도 결과 마음에 안들어도 자살/자해 최소 둘중 하나는...
-
실모 칠면 종류에따라 다르긴하지만 1이 80%이상정도 나오는데 님들은 어떤편인지...
-
오늘은 속도전 0
후딱후딱 끝내야징
-
이가ㅁ 12차 0
94 독서 2틀인데 수능날 2 가능할까
-
https://orbi.kr/00018415247 링크 타 들어가보면 알겠지만 진짜...
-
여러분 예열지문은 절대안나올 것 같은걸로 들고가세여 6
유명하거나 자주봤던 기출 지문 ㅊㅊ합니다 왜냐면 작년에 예열로 이비에스 인문 지문...
-
국어 기출 0
한번 더 볼까말까 이미 여러번 봤고 파이널 교재에도 전부 있음… 간쓸개랑 실모...
-
난이도 원래 이렇게 어려운가요?? 60점대...
-
...
-
퀄 상관 없이 뭐가 더 어렵나요 더 어려운거풀고싶아서요 둘 다 있긴 해서 시즌몇에...
-
jo79sd 같이 커피 받아요!
-
환상적이다
-
분위기메이커 0
내가 앉으면 여자들ㅇㅣ도망감
-
으걍 씨부랄
-
특히 평가원 빙자하는.... 한국교육평가원이라든지 이런 유사이름으로 평가원...
-
英 노동당의 좌파 본색…세금 이어 대학 등록금까지 올려 2
내년부터 英 대학 등록금 1700만원으로 필립스 교육장관 “2017년 이후 첫...
-
걍 미친듯이 달리면서 불안함을 잊는거야
-
난이도 어떰? 시즌 1 1회 82점인데 국어 고인물들 1,2컷 예상좀 해주세요ㅜㅜ
-
예비고3 이고 겨울방학 국영수 생지 단과 추천좀 해주세요 10모 국어 높2 영어...
-
여름내 << 이거 부사인거 어떻게 바로 앎? '-내' 부파접인걸 알고있어야하나
-
이투스 11월 0
오늘 국어 보신분? 난이도 어땠나요
-
화작시간에는 시청각자료실로 텔레포트해서 전문 배우의 발표를 들으며 시험을 치고...
-
남은 디데이보다 9
남은 실모 개수가 더 많아요 살려줘
-
이감 점수 2
이감 파이널 쭉 푸는데 보통 70점초중반이면 못하는건가? 이감 70점인사람들...
-
미치겠네 혀 깨물고 뺨 때리고 허벅지 꼬집고 일어서서 찬물 마셔도 조금있으면 잠 온다..
-
본인 인생 제대로 이뤄낸게 없어서 수능 쳐서 높은 대학 갈거라는 마음만 다짐하고...
-
이감 상상 0
이감 6-8 6-9 상상 5-4 5-9 중에 두개 못 풀 것 같은데 어떤거 빼는게 좋을까요?
-
왜 편지 없냐...ㅜㅜ
-
.
-
심찬우쌤 김유정 만무방 다뤄주신 강의 아시는 분잇나여
-
여성에 7번 차이고 인형과 결혼…日남성 6년 후 깜짝 근황 7
여성에게 7번 차인 끝에 인형과 결혼한 일본 남성이 결혼 6주년을 앞둔 근황을...
-
십덕씩드릴게요
-
메카니카 0
지금 메카니카 기출편이랑 기존에 있던 메카니카 역학편이랑 같은 건가요?
-
삼수생 3
안녕하세요... 제목 그대로 04 삼수생 입니다 너무 심적으로 힘들어서 글이라도...
-
햄버거와 구분할수 없다.
-
오늘 일어나서 인스타켰는데 갑자기 로그아웃되더니 로그인이 안됨 설마했는데 역시...
-
사이트 진짜 왜이럼 공부를 할 수 있게는 해줘야할거아냐...
-
이번 미적27번 0
어떻게 나올거 같으세요? 작수만큼 나올까요?
-
컴공은 코딩을 하는 곳이고, 무조건 코딩을 잘해야한다? > x 컴공은 코딩을...
-
그래서 힘과가속도 저울재는것도 가끔찍음,,,,,,,
-
수학 질문 4
0<AB의 기울기<1/4인데 ㄴ. 0<AB의 기울기<=1/4이다 는 틀린 선지 아니죠?
-
100분 96(30번) 근데 30번만 20분정돈 봤는데 모르겟네요 원래는 해설...
선라이크.
마지막에 잘못적었어요 ㅠㅠ f (x)의 x절편값이 최소일때로 생각해주세요
수정완료
f(0)이 음수인지 양수인지 나오면 더 깔끔하지않을까요오? 인터그랄f(x) -2에서 0까지가 max니까 기울기가 음수인 일차함수건가... (수정전)
(가)조건 잘 모르겠... 미2인줄알고 바로 e떠올렸는데ㅠㅠ 어캐 푸나요?
가 조건풀면 음수인지 양수인지 나와요
(가)조건이 로그가 정의되야 되는 조건이니까
밑이 0보다 크고 1이 아니어야되고 진수도 0보다 커야되니
g'(x)>0 g'(×)가 1아니고 g (x)>0 까지 뽑아내고
자연수가 되야하고 g (x)가 다항함수니까 g (x)차수를 k차로 잡고 (가)식= n (자연수)놓고 풀면 n,k가 나올거에요
그다음은 g'(x) ^n = g (x)또 풀고..
그다음은h 풀고.. g(x)찾는게 어려울거에요
23나옵니다 확인해주세요
오답
어떻게 푸셨나여
N=2나오고 g(x)는 2차 나오고 (가)조건 이용하면 g의 도함수는 1차고 f의 x절편이 최소가 되려면 (0,1)을 지나야 되니 g= 1/4(x+2)^2 나와서 y=0 x=2,-2 f( x) 로 둘러쌓인 넓이를 구했죠
(나)조건은 1차함수라고 해석해서 x+1나왔습니다
x절편 최대로 했어야 했네요.. ㅈㅅ 다 맞게푸신거 맞아여
g(x) 다항함수인건가요?
아 언급있네요 죄송함다
그리고 x절편이 최대일때 아닌가요 그럼 그때 x절편이 -1인데여
그럼 답 17/3 20나오네요
네네 맞아여.. 오늘 학교에서 생각나서 수정했는데 잘못적어도 제대로 알아 들으시네여 ㅋㅋ
ㅋㅋㅋㅋ 문제가 그럴 수 밖에 없더라구여 ㅋㅋㅋㅋ 이 문제 (나) 조건은 규토 미적에서 이미 나왔던 표현이군여.. 뭐 문제 전체를 평가하자면 전 제가 풀었던 자작 문제중 손꼽을 정도입니다 정말 참신하고 재밌었어요 ㅋㅋㅋㅋㅋ 이 문제 혹시 제가 타이핑해서 출처를 밝히고 써도 될까요 정말 좋았어요
네네 그럼여 저도 규토님 조건보고 썻어요 ㅋㅋ
원래의도가 작년 b형30번처럼 식하나만 주고 그 식에서 최대한 많이 조건을 뽑아내서 조각하나하나 맞추도록 하는 문제를 만드는 거였는데 제 생각엔 h결정하는게 좀 아쉬운듯 해요 x절편말고 참신한게 없을까..하는
저는 지금도 충분히 좋아요 ㅋㅋ 제가 이 문제를 처음 봤을때 조금 당황했거든요 ㅋㅋㅋ 상당히 생각할 게 많더라구요 ㅋㅋ g'(x)>1을 결국 유도하게 하는게 정말 좋았어요 이건 해설도 써봐야겠네요 굳굳입니다 ㅎ
감사함다 ㅎㅎ
아 그리고 타이핑쳐서 문제 만드실 거면 x=-2,2 와 y=f (x)로 둘러쌓인 부분 넓이보다
그냥 인테그랄 -2 ~ 2 |f (x)| 가 더 깔끔할 것 같아요 보시고 그냥 더 괜찮아 보이는걸로 만들어주세요
네네 ㅋㅋ 해서 올려드릴게여
올려드렸어요~