심심하네
게시글 주소: https://ys.orbi.kr/00071930402
C_n의 중심을 O_n, P_n에서의 접선을 k라 하면,(k의 기울기는 2(2n)=4n)
k⊥l_n⊥Q_nO_n이므로, O_n은 y=4nx+2n^2 위에 있다.
Q_nP_n의 기울기는 2n^2/2n=n이고, 이므로 P_n을 지나고, Q_nP_n과 수직인 직선은, y=-(1/n)x+4n^2+2
이 직선과 Q_nO_n교점 x 좌표 구해보면, (2n^3+2n)/(4n^2+1)
따라서, O_n은 중점인 ((n^3+n)/(4n^2+1),(12n^4+6n^2)/(4n^2+1))
따라서, a_n은 (12n^3+6n)/(n^2+1)
구하는 값은 12.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
하..
기스
뭐죠 이 개드립은..
랭랭커게이야..
교육청인가?
21년도 3월