컴공 일기266
게시글 주소: https://ys.orbi.kr/00071460551
n이 충분히 크고 적당한 λ가 존재해서 np = λ 라면, 이항분포 B(n,p)를 포아송 분포 POI(λ)로 근사시킬 수 있습니다.
사실 이항분포는 개별 시행마다 성공 확률과 실패 확률을 세세하게 따지기 때문에, 확률을 계산함에 있어서 복잡합니다.
특히 n값이 커지면 커질수록 그렇지요.
포아송 분포의 장점은, 이항분포처럼 개별 시행마다의 확률을 따지지 않고, 단위시간 / 구간 당 평균적으로 몇 번을 성공했는지만 따져도 적확한 확률을 구할 수 있다는 것에 있습니다. 또한, 이항 분포는 시행횟수 n과 확률 p를 매번 조정하면서 확률을 계산해야 하지만, 포아송 분포의 경우는 모수(λ)를 적절하게만 변환시켜 주어도 단번에 값을 구할 수 있죠.
예를 들어, 어떤 일을 독립시행한 횟수가 100번이고 어떤 일이 일어날 확률 P = 0.01이라고 가정합시다.
또 그 일이 2번 성공할 확률을 구한다고 가정해보죠.
그러면 X~B(100, 0.01)이고 시행은 독립적이므로 100C2 * (0.01)^2 * (0.99)^98
이 됩니다. 확률을 구하기는 했지만, 이 값이 대략적으로 얼마 즈음인지 단번에 파악하기가 쉽지 않죠.
하지만 시행횟수가 충분히 크므로 포아송 분포를 적용할 수 있는데, 이런 경우 조금 더 쉽게 구할 수 있습니다.
POI(λ) = x! / e^-λ * (λ)^x (x : 성공한 횟수, λ : 모수)
여기서 λ = np = 100 * 0.01 = 1
POI(1) = 2! / e^-1
e^-1 ~= 0.3679 정도 되므로 확률이 대략 0.1839 정도라는 사실을 알 수 있습니다.
포아송 분포의 확률질량함수식이 비교적 이항분포 확률질량함수식보다 계산하기 용이하다는 장점도 있지만,
이 분포의 가장 큰 강점은 유연성에 있습니다. λ를 자유롭게 잡을 수 있거든요. 하루 평균, 일주일 평균,
1년 평균… 원하는 값을 조정해 줄 수 있기 때문에 개별 시행에 집착하는 이항 분포보다는 조금 더 현실적인
분포라고도 볼 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘부터 연고다 스발
-
누구한테 받고싶음?
-
다들 갓생인가봄
-
하루종일 점공만 보던 폐인 인생을 살다가 오늘 하루 해외 여행가서 잊고 있었는데 새벽 4시에 소식 알게됨 5
새벽 4시에 연세대 노문 붙은거 알게더ㅣㅁ 땅바닥에서 친구들이랑 껴안고 염병이란...
-
아. 4
.
-
표점 5점이면 한두문제 차이인가….
-
. 13
ㅡㅡㅡ
-
우울할땐 우웅해 4
우웅
-
ㅈㄱㄴ
-
현우진 드릴드 3
왜 기하없는데 대체
-
ㅈㄱㄴ
-
솔직히 기우에 가깝겠지?
-
야식을 먹어 0
몬참아
-
소은이고 뭐고 0
제 여친이나 보고가세요
-
항상 불안해 1
하루에 공부를 얼마나 많이하고 얼마나 많이 배웠는지와는 상관없이 항상 불안합니다...
-
국어 전공자 혹은 국어황분들 하위 개념 상위 개념 도와주세요! 5
물리는 수학의 하위 개념인가요? 아님 물리가 수학의 상위 개념인가요? 또 지구,...
-
20대후반 3
sky공대 입학 어때
-
에휴..
-
연대 첨단컴퓨팅 0
이번에 신설된건가요?? 작년 추합보려고 하는데 없길래 예비 몇번까지 돌까요
-
everything's gonna be alright 8
웃고 싶을 때는 웃어줘
-
신명중명조는 도대체 어디서 가져오신 겁니까.. 아무리 찾아도 전 안보입니다... ..
-
일찍 자러갈게요 9
제가 다시 돌아오면 사람이 아니고 개입니다
-
ㅅㄱㅈㅁ
-
처음 보는 지문이여도 화자의 의도가 어떤 지와 어떠한 이야기를 하고자 파악이...
-
오르비는 오늘 그만하고 12
액상좀만피고잠 ㅂㅂ
-
현역 때 국숭세단이 적정이었는데 재수 땐 연대!! 총 4급간 올렸네요 헤헤헤 기분좋아요
-
발표를 기원하며 6
줄여서..
-
공군입대 시기도 그렇고 판을 깔아주니 도전 안 해볼수가 없네 없는 동력이라도 끌어써야하나
-
약해 ㅋ 1
오르비 내꺼
-
성대 나군을 보면 22,23년보다 작년입시에서 충원율이 확 떨어지던데 그런 이유가...
-
국어 과외 0
국어 과외하고 싶은데 과외를 받아본 적이 없어서 과외가 어떤 식으로 이뤄지는지...
-
이번에 컷 몇일거같나요
-
뭐임 1
좋아요 개많이 받았네 이게 맞나? ㅋㅋㅋ
-
ㅇㅇ..
-
별거 없네 ㅋ
-
3시 전엔 잔다 1
한다면 하는 남자야
-
가능성 있을까요?
-
오댕이>오리비>>오르비로고>>비둘기>>>>>>>>>>>라봉이
-
근데 사탐은 6
일단 글씨가 많으면 실전에서 압박을 받을 수 밖에 없는거 같음...
-
하 짱깨새끼들
-
ㅂㅂ 6
왕자 잘게 굿밤
-
와진짜뒤질거ㅏㅌ네
-
[앵커] 원래 설 연휴 이후 헌법재판소 출석을 준비했던, 윤석열 대통령, 앞당겨...
-
수능을 전혀 모름 11
제목 그대로입니다 한번 수능을 보기는 했으나 수능 보기 2달 쯤 부터 최저 맞출려고...
-
아 연대쓸걸 2
후회중...
-
7시건은 자는데 몸이 어디 깔려있는것같이 무거움
-
왜 살았지
-
요즘맨날 롤하면서 6시 10시까지달렷더니
첫번째 댓글의 주인공이 되어보세요.