수학에서 실전개념이라는게 뭐라고 생각함?
게시글 주소: https://ys.orbi.kr/00071329880
답지풀이말고 천재적인 풀이같은거 있잔아
굳이 n축같은 교육과정 외 스킬 안 가져오고도 그래프로 푼다거나...그런거
실전개념? 뭐라그럴까 이런걸
예를들어서 저 밑에 문제 조건을 보고 y=sin(k/6)선대칭이구나 바로 알아내는...그런거
이런거는 어디서 배우는거임? 이런게 재능차이인가 기출 풀어도 저런 능력은 안키워질 것 같음
저런 직관은 어떻게 키우는걸까
저런거에 집착 안하고 정석풀이 위주로 공부하는 편이었는데 3등급 벽이 안뚫려서 고민이 많아짐
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
롱패딩 장점 12
안에 과자 넣으면 고정됨
-
이 사람 말고 다른 사람 못만날거같고 그래? ㄹㅇ 카리나가 와도 안바뀔거같은데
-
ㅇㅇ
-
이게
-
상상)))님이 원하는 년도로 돌아갈수 있으면 언제로 돌아감? 65
단,코인,주식,복권 등등 돈과관련된 것 확인 불가능 딱 특정 년도로 돌아갈수있음...
-
의외로 중국인의 19퍼는 기독교인임 기독교인은 천주교 개신교를 포함하는 큰 틀이고...
-
주변에 있다는건 큰 행운인듯 그래서 난 행운아야
-
“할머니 나 배고파 죽을거 같아요 밥 좀 주세요” 바로 갈비 ON
-
시간빠르다....
-
맞나요?
-
시발점에서 뉴런으로 가기 전 문제집 어떤게 좋을까요 1
시발점 인강 1회독 후 책 2회독 시작하며 시발점 전문항 다시 풀면서 유형서나...
-
짝사랑은 너무 아프다 25
5년넘게 짝사랑중… 왜 요즘은 연락 안오니 누구 생겼니
-
튀김가루 사오기와 반죽 섞기 퀘스트를 완료하고 전 먹자
-
이게 옯창이지 3
펑
-
스펙평가좀 29
키 2cm 몸무게 90kg 원세대 의류학과 저녁 먹는중 뭐먹는진 비밀임 코딩할 예정 평가좀
-
독서토론대회는 하면서 왜 수학경시대회는 안함? 다양하게 해야하는거 아닌가 건국대...
-
이미 마음가짐은 외대 장학생
-
이별 극복하는 방법좀 19
얼마전 헤어졌는데 너무 슬프고 마음 아파서 공부가 손에도 안잡히는데 진짜 극복하는...
-
해도 후회 안 해도 후회라면 해보는 게 나을 수도...?
-
떽띠땐뜨 0
-
과외 갈 때 ㅈㄴ 꾸미고 가는중 ㅋㅋㅋㅋㅋㅋ...
-
쪽지하세요 4
-
그냥 물어본건데 ㅋㅋㅋ 전 113나와요.... 저런 사람 실제로 본적 있어서 ㅋㅋ
-
잘못뽑은 반장 0
이란책 아심?
-
여친 재수해서 2월부턴 일주일에 한번 만나는데 아침에 수영 저녁에 달리 운전면허...
-
내일의 나를 너무 잘믿음 내일의 나에게 너무 많은걸 토스함 내일의 나는 내일 모래의...
-
공부는 기세다 1
LAMY 샤프 사야겠다 없으니까 텐션 떨어지네
-
합성함수에서 속함수가 역함술때 원래함수 그래로 그리고 xy바꿔서 축 맞추기 캬
-
천국의계단 10단계 20분 ㄱㄱ 사람죽어요
-
살찌워보자~~
-
비독원듣는데 본인이 누가 그렇게 말한거 봤다면서 말하시던데 실전에서 하기엔 좀...
-
하아ㅏㅏ... 건대보다 낮은취급 당할까봐 쫄린다 ㅜㅜ
-
갈비ㅇㅈ 17
냠
-
키 174 몸무게 47 키빼몸하면 127나옴
-
카케구루이 트윈만 애니로 조금 봤는데 이게 고등학생들 맞나 ㄷㄷ
-
끝나자마자 봤는데 ㄹㅇ 자살 마려웠음
-
술주정해본 적 있음
-
전 24수능때 과탐한거...
-
구라 같지? 11
각오해^^
-
70+가 사람임????
-
천만덕 가쥬아
-
밀주일 정도 쓰니 쪼까 싫증 나네
-
여친 ㅇㅈ 6
-
美 법무부, 트럼프 수사 검사 12명 ‘무더기 해고’ 1
[앵커] 취임 일주일을 넘긴 트럼프 미국 대통령, 거침없는 행보를 이어가고...
-
갤탭 사야지 4
s10+가 12.4인치던데 이정도면 필기하는데 불편함은 없겠죠?
-
어캐하죠
-
레어사요 7
레어사요...
-
원래 모르는건 2번찍기로 결심햇엇는데(정치x) 공통 답배치가 생각보다 너무 고른거임...
-
어휴 정보만얻고나와야지
한 문제 한 문제를 소중히 여겨야댐
찌찌뽕
근데 문제 하나 무작정 처다본다고 그런게 떠오르지는 않음 나는....
이제 저 문제에서 선대칭 아이디어를 알앗으니 비슷한 조건이 나왓을 때 이 문제를 공상하듯이 풀 수 잇으면 정말 빠르게 실력상승이 가능함미다
저건 실전개념보단 짬바임
저런거 기출 풀다보면 보입니다
단 재능 있는 사람은 개념만 해도 보여요
재능 없으면 기출 5회독은 해야 그제서야 보이고요
그냥 4점짜리 벅벅 회독 돌리면 감이 오는걸까용...? 어떤 생각을 해야하는건지 궁금해용... 수분감 이런거 들어봤는데 걍 현우짐풀이 외우기 느낌이라 손절햇어요
다른 사람의 풀이에는 사고과정이 안 들어있어요. 물론 해설지가 아니라 강의같은 경우에는 그 사고과정을 어느정도 설명해주지만, 그럼에도 본인 스스로 어떻게 사고해서 이 문제가 풀린건지 정리할 필요가 있습니다.
문제를 열심히 시도를 해보고 해설을 봐야하는 이유도 이때문입니다. 그냥 보면 사고과정을 파악하기가 쉽지 않거든요. 어느정도 부딪혀보고 해설을 보면 여기서 왜 그 생각을 햇어야 햇는지를 파악하기가 수월해지죠. (또 왜 내가 못 풀엇는지 등등..)
강사가 가르칠 법한, 혹은 널리 퍼져 있는 실전개념과 공식들을 우선 숙지하고 있어야 함. n제나 기출을 풀 때 우선은 푸는 것 자체에 집중하되, 그 풀이가 덜 다듬어져 있다면 혼자서 끙끙대보는 거임. 여기서 적용 가능한 개념이나 공식이 없을까? 필요하다면 해설지나 강사의 풀이과정을 참고해서라도 이런 풀이를 많이 접해야 함. 이런 식으로 문제를 충분히(충분히의 기준은 사람의 재능에 따라 갈림) 접하다 보면 새로운 문제를 볼 때 기시감이나, 말로 표현 못할 직감이 들 때가 있음. 이 직감은 문제를 많이 풀수록 더 자주, 더 뚜렷하게 나타남. 이게 쌓이고 쌓여서 풀이도 다듬어지고, 빨라지는 거
+번외로, 위의 문제는 선대칭을 꺼낼 필요 없이 그냥 y=sinx와 y=sin(kπ/6)의 교점의 개수로 생각해도 무방함. 어차피 교점의 위치를 알 필요 없이 개수만 구해도 된다면, 구간에 관계없이 sinx=sin(kπ/6)일 때 교점이 생기므로 굳이 그래프를 희한하게 안 그려도 됨. 당연히 이런 아이디어도 다양한 문제를 많이, 아주 많이 풀다 보면 자연스레 떠오름