우주
게시글 주소: https://ys.orbi.kr/00071233803
https://virtualmath1.stanford.edu/~conrad/diffgeomPage/handouts/trivline.pdf
Brian Conrad라는 앤드류 와일즈 제자인데다가 현우진 쌤 학부 지도교수인 정수론 쪽 수학자인데, 예전에 학부 미분기하 수업을 한번 진행했을 때 올린 수업 자료. 제목은 "Why the universe cannot be S^4" 라는 상당히 어그로성이 짙은 제목의 문서인데, 기본 세팅은 spacetime (smooth Lorentzian 4-manifold, 다시 말해서 signature 가 (3,1)인 pseudo-Riemannian manifold) 이고, 블랙홀 같은 singularity는 없다고 가정한 상태. 대수하는 사람 답게 분명 미분기하지만 아주 미분기하 스럽지는 않고 (예를 들어 curvature나 connection form같은게 등장하지 않음) 오히려 (선형)대수적인 면모를 부각해서 써놓음.
설명은 파일의 첫 페이지 Corollary 1.2 이후에 써있음. S^4는 simply connected이고 S^4는 non-vanishing vector field를 갖지 못하기 때문에 (Hairy ball theorem) S^4는 Lorentizian manifold가 될 수 없다 (Corollary 1.2) 이렇게 설명.
Corollary 1.2는 Theorem 1.1에 의해서 나온다고 써있는데, Theorem 1.1은 그 자체로 흥미롭고 직관적인 정리이기 때문에 따로 적어봄.
Theorem 1.1. Let $E\to M$ be a smooth vector bundle over a manifold $M$. If $E$ admits a pseudo-Riemannian metric $g$ with signature $(n_{+},n_{-})$, then there exist smooth subbundles $E^+,E^-\subset E$ with ranks $n_{+}$ and $n_{-}$ respectively such that $g$ has positive-definite on $E^+$ and negative-definite on $E^-$. In particular, the natural bundle map $E^+\oplus E^-\to E$ is an isomorphism.
원래 증명 안 보려고 했는데, 증명에서 Grassmannian을 써서 보게 됨. 정확히는, Theorem 1.1은 fiber에서는 자명하기 때문에, 테크니컬한 부분은 fiber들에서 decompose가 된 것들이 잘 짜맞춰져서 smooth subbundle들로 쪼개진다는 것을 보이는 부분임. 이 과정에서는 보통의 경우에는 smooth frame을 잡고서 M위에서 point들을 움직였을 때, local expression들이 smooth 하게 vary하기 때문에 smooth 하다고 하는데, 여기서는 Grassmannian을 이용해서 증명함. 나만 처음본 것일 수도 있는데, 이렇게 증명하는 것은 또 처음봄. 이것에 대해서는 사실 Conrad가 맨 처음 문단에 써놨는데, "pseudo-Riemannian manifold이기 때문에 기존의 Riemannian 에서 하던 직관적인 작업들이 잘 되지 않을 수 있다" 이렇게 설명함. (이래서 pseudo-Riemannian manifold가 어려움)
기본 아이디어는, 앞서 말한 대로, 각 fiber마다의 decomposition을 한 다음에, quotient를 해서 positive definite한 파트만 살려놓으면, $G_{n_+}(\Bbb R)$ 에 한 점이 대응됨. 따라서 $M\to G_{n_+}(\Bbb R)$로 가는 set map을 만들 수 있는데, 문제는 이것이 smooth 한지 체크하는 것. 이걸 어떻게 보였는지 궁금하면 노트를 한번 보길. (아무도 안보겠지만!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘 하루 8
행복하길..
-
난 어렸을 때 정글고를 보면서 그런 고등학교를 기대했었지
-
저격 당햇어 2
엉엉 울고 잇어
-
내일은 현생살께요
-
그치만 절대 밥은 먹지 않겠어요
-
계시네
-
뭐 본인의 선택이긴하지만.. 전한길카페도 정치이야기밖에 없던데
-
어그로임
-
얼마나 피곤하셧던 걸까
-
작년은 안보긴 했다만..
-
배 존나아프다 진짜
-
내여자는 왜 업을까
-
. . . 걍 조종사지 이 인종차별주의자야
-
안녕히 주무세요 0
하암
-
잠 좀 자고 싶다 11
불면증이 너무 심하네.. 잠에 들어도 자주 깨고
-
신촌에 사람이 개마는데 15
나를 아는 사람은 하나도 업다 소설 광장의ㅜ주인공이 된 기분이군
-
워
-
조교 할때 0
귀여운 학생이 나보고 선생님이 스타일 제일 좋아요..제 스타일이에요 해줌 으흐흐 애들은 너무 귀엽다
-
많으신분이... 13년전에 오르비를 어떻게 하죠
-
대학잘가고싶다 아!!!! 대치동모학교다니능 공칠인데… 관독다니면 애들다 열심히해서...
-
거의 1화당 1번씩 잠들엇어
-
. 12
-
님들아 저 사실 21
13년 전에 오르비 네임드였어요
-
자러갈게 4
오늘은 피곤하네
-
"모든 뱃지를 다 모을 때까지"
-
가도 다 냥대로 가네
-
수험표 혜택만으로도 진짜루 응시할 가치가 충분함
-
어어안된다
-
5억번 봐야지
-
야식 먹고 10
바로 바이크타기ㅠ 이새벽에 뭐하는건지…
-
레어의 장점 8
글을 쓸때 예쁘다
-
스토커붙엇네 21
하..
-
선택적 저능 20
영어 3보다 수학 100이 더 쉬울 것 같아서 영어 유기하고 그 시간에 수학함 근데...
-
자기보다 어린 선배 볼때 기분이상하다는데
-
기생집 0
실전개념은 다른 쌤 듣고잇는데 기출은 기생집이 듣고싶어서 들을라는데 ㄱㅊ을까요
-
"혹시 이과이신가요?" 10
"네 그렇습니다." "혹시 문과이신가요?" "...왜요?"
-
숨마쿰라우데 2
숨마쿰라우데 수학 해보신분 있으신가요?? 이걸로 개념 괜춘할까요?? 너무 지엽적이라는 분들도있어서…
-
ㄷㄷ
-
막상 버리지 못한 서울대와 한의대에 대한 열망감 삼반수를 해보지 못했던 것에 대한...
-
아하..
-
새들이 운다 1
Birds are crying
-
으흐흐
-
확실히 4
탈릅시즌이긴 하네…오늘 몇명이나 간거지
-
그럼 내 인생을 비로잡을 수 있을 텐데
-
옯질이 좀더 재밌어질것가튼데 매번 쓰던것만 돌려막기하는 느낌
-
옯스타 홍보하겟습니다 13
nynykyo_93 닉 모르겟으면 안받습니다
-
어려울까요..... 이미 상향이라 마음놓고있긴한데ㅋㅋㅠㅠ
-
호무라가 회귀해서 마법소녀 소원빌때 마도카가 절대 마법소녀와 마녀가 되지 않게...
-
몰래 구경할 수 있음 백이 설아 흑이 샴슈
첫번째 댓글의 주인공이 되어보세요.