-
자야지 4
-
좀 최신 애니인 사펑 엣지러너를 봤으니 암굴왕 같은 명작 틀딱 애니나 볼까
-
반수의 결과로 가치 있을까요? 중대가 더 높아졌긴해도 사회나가면 중경외시...
-
잘자요 4
다들메리크리스마스
-
병약미소녀 ㅇㅈ 24
은 구라고 그냥 ㅂㅅ임 펑
-
모두 잘자요 9
다들 행복한 이브 보내셨나요? 전 아싸라 늘 지내듯 지낸 것 같네요.. 모두 잘자고...
-
현역인데 여기 못가면 재수할 예정인데 합격확률 0퍼센트인가요? 9
ㅜㅜ..그리구 이해가 안가는게 최초정시 모집인원이 238명인데 저기 등수 안에잇는데 3칸 ㅜㅜ
-
산타랠리 에 숏을 쳐?
-
하루종일 오르비를 지킨 자의 훈장
-
에 전혀 관심 없는 건 아닌데 n이 늘어나니까, 연애 감정이 무뎌져요.. 연애...
-
기만글만 안쓰면 욕 안먹을 텐데
-
ㅂㅂ
-
크리스마스에 여친없는 애들끼리 놀고있으니까 ㅈ같음이 2배 흐흐
-
이제 자야돼 2
내일 또 보자 옯붕이들
-
(고려대)의대 면접 보는데 얼마 정도 시간이 소요 되나요?? 고려대 아니어도 한번씩만 답변좀...
-
ㅂㅂ
-
이제야깨달아버렸다
-
감성이 다르노 결말이 너무 성급했단 느낌은 아무래도 이 애니가 10회라는 분량밖에...
-
논술 예비 받음 ㅋㅋ
-
정시의벽 <<< 6
이 사람도 글 쓰는 거 까먹어서 아까 호다닥 글 쓰고 또 한참 잠적했다가 나타남...
-
일본영화 추천좀 2
잔잔한거 좋아함 넷플에있는거로 ..
-
이렇게 푸는거 맞나요 재밌네요 ㅋㅋㅋ
-
ㅋㅋ 동지들
-
여르비 ㅇㅈ해도 누가했는지 다까먹음 망할거 닉보고는 여르비인지 못맞출듯
-
막상 좋아하는 사람 보면 이상형과는 좀 거리가 있는 듯요
-
쌍사 이 씨발럼
-
자야지 6
잠뇨
-
???: 이거 정적분 정의 아님?? 이건 미적분의 기본정리라고!!!!!!!!!!
-
컴이나 정보대학
-
저 하나 질문좀요.. 지방사는 사람들이 서울권대학으로 가려는 이유가 뭘가요? 9
단순히 대학 네임드때문일가요? 제가 공대가 목표이고 전북에서 사는데요..어차피...
-
아주대 문과에서 공대로 전과하려면 필수로 들어야 하는 수업들 때문에...
-
들려주지 않아서 불안하네요...
-
오르비할거면 오르비만 해라.
-
입으면 덥고 벗으면 추움 반만 입을까
-
탕
-
어제 하루종일 내가 봤는데 둘 다 거의 안왔음
-
여장했다
-
슬프다
-
리프트 타고 올라가면서 내가 자꾸 진학사 얘기 수시 추합 얘기 표본분석 얘기 이딴거...
-
둘다 붙으면 ㅇㄷ감?
-
하는게 버킷리스트 중 하나예요
-
안정으로 쓸 카드 뭐가 더 나을까요 화학과 가도 취업은 괜찮을까요?
-
쫄튀면 실망인데
-
자러감 7
내일 하루 참아본다
-
오르비호감고닉금테그분...
-
몬난놈들끼리는 6
닉만봐도 즐겁다
-
그때도 과탐 과외 수요 있나요?
다음곡선 ~~가 위로 볼록한 구간에 속하는 실수 x가 아닌것은? 이랑
곡선~~~이 실수 전체의 구간에서 아래로 볼록할때
이런 두문제가 있는데 첫번ㅁ재ㅜ 문제풀때는 f"(x)과 0 관계를 볼때 =이 안붙고 두번째 문제 풀때는 =이 붙는 이유를 모르겠어요ㅠㅠ 두 문제 질문에서 뭐가 다른게 있나요?
질문이 잘 이해가 안됩니다
앗 다른분께도 질문했던거 복붙해서 쓰느라 그러네요ㅠㅠ
지금 위의 저 사진처럼 되는거까지는 이해가 가는데
문제 중에 873이랑 874 질문 차이를 잘 모르겠어요 둘다 위로볼록 아래로 볼록 물어보는거같은데 873번은 볼록한 구간이 이미 정해진 상태고 874는 전체 실수여서 그런겅가요? 어디에서 차이를 보고 무슨 조건을 써서 풀어야할지 감이안잡혀요ㅠㅜㅡㅠ
제 능력이 안되서 말로 설명하기가 힘드네요
개념책을 같이 놓고 본인이 깊게 생각해보세요, 그리고 안된다면 다른분께 여쭤보세요
?? 그 두개 동치 아니었음? 헐
f'' > 0
아래로 볼록
f'' ≥ 0
모두 동치 아니에요
맨위 맨아래는 당연히 다르게 생겼으니까 다른데 아볼이랑은 각각 뭔차이죠?
찾아보니 직선도 볼록이라고 볼 수 있네요.. 아래 두개는 동치일거 같습니다
예를 들어, f(x)가 상수함수면 f''는 0이지만 볼록성을 묻기는 애매하죠
이런문제는 수능에는 안나올거 같아요 그냥 두개 동치라고 생각하셔도 될듯
아 뭔지 알겠어요 감삼다 ㅎㅇㅌ
저도 님 덕분에 좀 자세히 찾아보게 되었는데 볼록(convex)이 두종류가 있음
볼록 / 강한 볼록
여기서 직선은 볼록함수기는 하지만 강한 볼록은 아님. 마치 상수함수가 단조증가이지만 강한 증가함수는 아니듯이
그리고 수능에서 다루는 볼록성은 강볼록을 의미함. 따라서 상수함수 / 일차함수는 "수능 범위"에선 위로 볼록하지도, 아래로 볼록하지도 않음
영어로 된 용어들을 제가 한글로 바꾼거라 틀린 용어가 있을수도 있어요