쉽고 재밋고 개 유명한 문제 (3)
게시글 주소: https://ys.orbi.kr/00070232954
전 문제들처럼 엄청 쉽진 않지만 여전히 쉬워요, 근데 너무 유명해서 몇명은 알꺼같은데 ,,
6개의 점이 있고, 이 점들중 임의의 두 점을 빨간색 혹은 파란색 선분으로 연결했다.
(어떻게 3점을 골라도 일직선 위에 있진 않다.)
이 때 한 색의 선분으로만 이루어진 삼각형이 있음을 보여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
동생이.. 8
훈련소 일찍들어갔으면 케리아 만날 수 있지 않았을까하고 일찍들가서 지 소개시켜주면...
-
싫어하시넹
-
여자를 좋아하는 걸까 남자를 좋아하는 걸까
-
얼리버드 기상 2
-
노래들으면서게임하고싶음뇨
-
애니프사 탈출 5
농담곰단 합류 완료
-
옆동네는 무섭네 10
군기 빡세게 잡는구나 우리가 아니어서 다행
-
내가 좀 여자를 밝히긴함
-
뭐야 내 눈 돌려줘요
-
게이짓하면 속으로 심쿵하고 설레서 좋아함뇨
-
탐구도 싹다 노베라치고 2026학년도 수능만 생각한다 할때 탐구는 사탐고르는게...
-
이미 재수 서바이벌에서 이상민 성적상승보고 악플 존나 달림
-
14111 41111 이런 저주받은 머리 키워주면 재밌겠다
-
같이 피방 가자
-
피시방이나가야지 2
렛츠기릿
-
얼마나 개념이 제대로 머릿속에 잘 빼다박은 친구인지 알아보는 것 또한 능력이거든....
-
12월이네 0
세상에나
-
집에서 롤만할거같은디..
-
그냥 인강 듣고 메이져 컨텐츠로 공부하는게 솔직히 더 .. 막말로 세상 학원이 거의...
-
환불도 몇개들어버려서안대고.. 양도어케하져..ㅠㅠ
-
오르비식 노베 모집해서 헬스터디 상위호환 느낌으로
-
내 글 위로도 글 있는데 내 글만 사라졌다 생겼다 함뇨
-
요즘 여장남자 근황 22
유튜버 한주
-
저녁은 양고기 4
칭따오맥주와 함께
-
??
-
점수만 넘기면서 보고 끄면 개추 ㅋㅋㅋㅋㅋ
-
냥~!
-
다 처음 2
태어나서 논술도 처음 정시도 처음 다 되게 재밌는 길이라는걸 20살 되고 알아버렸다..
-
개버죽다
-
나도 헬스터디 3
쌤들이랑 실모배틀찍을거임뇨… 헬스터디수능만점ㄱㄱ혓
-
헬스터디 사실 3
유튜브로 안보고 오르비로 반응만 보고 아는척중,,,,,,
-
나도헬스터디나가고싶은데 11
사탐완전노베가1년만에5050 한번보여줄자신있는데
-
제곧내
-
로고는 저의 순수창작물이며, AI를 사용하지 않았습니다. (갤럭시노트에서 아이디어...
-
성적대박적상승 헬스터디 아름다운 마무리 근데 한건희 포지션 한 명은 더 있어야 재밌을듯
-
너건따 브레인포그
-
조회수잘나오시잖아
-
아이민 백만번대면 이제 틀니임?
-
시즌 3을 과연 하려나 모르겠네
-
안녕하세요. 수학의 판도를 바꾸는 Math Changer 어수강 박사 (과천...
-
후기 논술 6개 보면서 계속 다 붙겠다 싶었는데 처음으로 떨어지겠다고 생각함. 그냥...
-
기상 12
얼버기 굿모닝입니다
-
약간 시뮬레이션 돌려봤는데 느낌 있는데 나?
-
어땠음? 1-1,1-3,2번,3번 마지막 문제 못 품
-
너무 아쉬운것이야
-
평소에는 딱히 관심없고 접점도 딱히없던 이성친구랑 알고보니 같은 가수를...
-
헬스터디 이번에는 33442 이런 사람 키워봤으면 좋겠는데 13
지금까진 너무 다 노베엿음… 노베도 있고 저런 사람도 한 명쯤은 있었으면
-
고2 때 정시한다고 자퇴했지만 그 후로 공부 안함 고3 6모 국어2 수학4 고3...
이거 6개 점이 다 일직선상이면 어캄
아 ㅈㅅ 그거 빼야되네
어떤 3점도 일직선 위에 있지않음뇨
이런 기본적인걸 빼먹다니
임의의 점 p를 선택합니다. p에서 다른 5개의 점으로 연결되는 선분은 5개가 있습니다. 이 선분들은 빨간색 또는 파란색입니다. 비둘기집 원리에 의해, p에서 뻗어나가는 선분 중 적어도 3개는 같은 색을 가집니다. 일반성을 잃지 않고, 이 색을 빨간색이라고 가정하겠습니다. (만약 파란색이라면 빨간색과 파란색을 바꿔서 생각하면 됩니다.)
p와 빨간색 선분으로 연결된 3개의 점을 q, r, s라고 부르겠습니다. 이제 세 점 q, r, s 사이의 선분을 살펴봅니다.
만약 q, r, s를 연결하는 선분 중 하나라도 빨간색이라면, 예를 들어 q와 r을 연결하는 선분이 빨간색이라면, p, q, r은 모두 빨간색 선분으로 연결된 삼각형을 이룹니다. 따라서 증명이 끝납니다.
만약 q, r, s를 연결하는 모든 선분이 파란색이라면, q, r, s는 모두 파란색 선분으로 연결된 삼각형을 이룹니다. 따라서 증명이 끝납니다.
어떤 경우든, 한 가지 색의 선분으로만 이루어진 삼각형이 존재함을 보였습니다.
결론
6개의 점이 있고, 이 점들 중 임의의 두 점을 빨간색 혹은 파란색 선분으로 연결하면, 반드시 한 가지 색의 선분으로만 이루어진 삼각형이 존재합니다. 이 문제는 램지 수 R(3,3) = 6의 한 예시입니다. 즉, 6개의 점이 있으면 어떤 방식으로 두 가지 색으로 색칠하더라도 단색 삼각형이 반드시 나타난다는 의미입니다.
흠..
완벽하긴하네..
ㄷㄷㄷㄷ
지피티 냄새
멍청한 공대생은 GPT 없이 못 살아
님 항상 보면 수학 이론들 많이 알고 계시던데 수학과 지망하시나요
넨
오 ㄷㄷ 멋지네요 필즈상 수상하시길
그건 좀..
뭐임 또 나만 저능하지 ㅜ
저거 지피티임뇨
풀엇음뇨 헤으응
한 점 기준으로 같은 색 선분 3개는
필수인거 생각하면 풀리네용
이거 맞아요
선이 교차해서 만들어지는 삼각형 말고
점민 이어서 만들어지는 삼각형만 따지면
점 세개를 생각하고 빨빨파로 비원색 삼각형이 있음
그러면 한 빨변에 대해서 파파로 비원색 삼각형을 또만듬
이때 마지막으로 만든 삼각형에서부터 대충 대각선 그으면 파란색이든 빨간색이든 원색 삼각형이 생김
머지 이게
먼지 모르겟음
이거 됨뇨?
삼각형이 주어진 6개의 점으로만 이루어져야됨뇨
망했뇨
애초에 이풀이도 틀린거같기도 걍 머리가 안돌아감
문제가 너무 길어요 요약해주세요