구간 별 함수 영향력 죽이기
게시글 주소: https://ys.orbi.kr/00070041033
주어진 함수 f(x)의 그래프가 다음과 같습니다.
단순하게 생각할 때 이 함수에 어떤 함수 g(x)를 곱하면
구간 [t-1, t+1]에선 g(x)의 함숫값이 0에 더 가까워지고
구간 (-\infty, t-1)과 구간 (t+1, \infty)에선 g(x)의 함숫값이
힘을 잃어버리게 될 것입니다.
예를 들어 위 함수에 cos(ㅠx)를 곱하면 그래프가 다음과 같습니다.
t=1일 때 구간 (-\infty, 0)와 구간 (2, \infty)에서는
g(x)가 아무런 힘을 쓰지 못하게 되었고,
구간 [0, 2]에서는 곡선 g(x)의 그래프와 비교할 때
각각 x=t-1과 x=t+1에 해당하는 부분에 가까울수록
그래프가 0에 더 가까워졌음을 확인할 수 있습니다.
미분해서 도함수의 부호를 조사하는 것도 의미가 있겠지만
직관적으로 생각해 볼 때 x절편 조사해두고
기존 곡선보다 조금씩 y축에 더 가깝게 그래프를 그려주면
간단하게 이해해 보는 데 도움이 될 수 있겠습니다.
a=-3, b=-4 정도로 예시를 들어보았을 때
함수 f(x)-|f(x)|의 그래프는 다음과 같습니다.
f(x)의 함숫값이 음이 아닌 실수일 때는 0을,
음의 실수일 때는 그것의 두 배인 값을
함숫값으로 하는 함수임을 확인할 수 있습니다.
만약 함수 f(t)-|f(t)|를 구간 [0, x]에서 적분한 것을
x에 대한 함수 h(x)라 생각해 본다면
(a, b)=(-3, -4)인 경우에 h(x)는
어떤 양의 실수 k에 대해 구간 (-\infty, -k)와
구간 (k, \infty)에서는 상수함수이고
구간 [-k, k]에서는 감소한다 생각할 수 있겠습니다.
비슷한 맥락입니다.
f(x)는 대충 sin함수이고 f(ㅠx)도 마찬가지입니다.
g(x)는 구간에 따라 0 또는 1을 함숫값으로 가집니다.
g(x)=0인 구간에서 f(x)는 소멸하고
g(x)=1 구간에서 f(x)는 유지될 것입니다.
이러한 논리로 두 적분값을 확인해 보시면
어떤 값 k가 양의 실수 p에 대해 0 이상 p 이하일 때
k=p가 되어야 하는 느낌으로 풀이를 이어가실 수 있습니다.
(나) 조건에 g(x)에 곱해져있는 두 함수의 그래프를 확인해보면 다음과 같습니다.
먼저 함수 |x(x-1)|+x(x-1)의 경우
구간 (-\infty, 0)과 구간 (1, \infty)에선 0을,
구간 [0, 1]에서는 각 x값에 대해 2x(x-1)을 함숫값으로 합니다.
함수 |(x-1)(x+2)|-(x-1)(x+2)의 경우
구간 [-2, 1]에서는 0을,
구간 (-\infty, -2)과 구간 (1, \infty)에서는 -2(x-1)(x+2)을
함숫값으로 하는 것을 확인할 수 있습니다.
여기에 어떤 함수 g(x)를 곱한다면
구간 별로 영향력이 변할 것입니다.
강해지거나, 줄어들거나, 사라질 것입니다.
강화, 약화, 소멸이라고도 이야기해 볼 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오르비 땅따먹기 6
특정 검색어 도배 미코토 검색하면 내 글이 50퍼가 넘는다 흐흐흐
-
심심한데 0
뭐 질문해줘요
-
과탐과목 2
물원생투했는데 바꿀까요 그대로갈까요
-
걍 닉네임 안뜨면 안됨뇨? 왜케 거슬리지
-
서강대교 성수대교 한강대교
-
마렵네 :)
-
질병분류체계에 정신병으로 한국페미 집어넣어야한다 반사회적 인격장애와 경계선지능장애가...
-
똥줄타실것같음
-
이과고 연대 활우 성대 과학인재 중대 탐구형인재 썼는데 연대만 1차 붙어서 면접...
-
글 리젠이 없네 0
흑흑
-
미코토 이쁨 3
-
마히루 이쁨 1
-
타이탄 이쁨 4
-
걍 구라일 확률이 매우 높음뇨 커뮤에 치대 떡락한다 의대는 신이다 도배하고 다니던...
-
루비 예쁨! 7
-
종강언제함 5
ㄹㅇ
-
현기증인가 4
물에 한시간정도 들가 있었더니 살짝 어지러움
-
엄청 불안하네 갑자기 영어 1 아니면 다 망하는건데
-
제가 고1 때 자퇴해서 고2 때 첫 수능 보고 고3 (올해) 재수인데 사실 내년에...
-
성심당 애니플러스 애니세카이
-
부시맨 브레드 나오면 소스 한개만 나오니까 나머지 두 종류도 꼭 같이 달라고 하셈요...
-
팩트는 ㅄ이 맞다는거임 10
언냐 뭘 부정하고 있어
-
어떻게 대해야할지 잘 모르겠음.. 특히 그 사람과 다른 사람들 같이 있을때 스스로...
-
컴공 생각하고 있었는데 점점 ai발전하고 이미 기술자들 많은거 같은데 지금이라도...
-
안녕하세요. 처음으로 글 써봅니다. 일단 전 광역시중 하나에 거주하는 남학생입니다....
-
어케한거냐면 진짜 말그대로 하루종일 아무것도 안먹음 아이스아메리카노나 제로 음료는...
-
이게오르비지 ㅋㅋ
-
나랑 키배 잘뜨다가 어디갓어
-
상향으로 한장 쓴다면 고려대 철학과, 연세대 신학과 중 어디가 그나마 가능성 높아보이시나요..??
-
6평에도 언매 다 맞았었는데 시간도 많이 안쓰고 수능날 가니까 비가 내리던데 공부는...
-
작년 생명 엣지 1
엣지는 크게 안달라지나여? 살까해서..
-
학교가 수원이라 놀아달라고도 못함 ㅠㅠ
-
애기 때는 귀여웠는데 14
지금은 늙어버린 재수생이 됐음 엄
-
개인적으로 예수도 안믿지만 타로는 믿음 학교축제에서 타로 봤었을 때 매 우 정 확 했 음
-
지금은 95키로임 ㅋㅋㅋ
-
근데 돈이 없어...
-
그냥 그런생각이 듬 물론 그 평생이 얼마 안남은듯
-
??
-
난 친구가 없어 2
흑흑
-
서울대, 한양대는 학종 정성평가라 검1고생은 나가리고 고려대, 연세대는 정량평가라 쓰여있네
-
결혼하고싶다 와이프한테 이것저것 요리만들어서 먹이고싶다 앞치마 두르고 요리하고...
-
오야스미 0
네루!
-
어디로 가야하나요 입결로 따지면 숭실이 압승인것같긴한데 광운대 전자가 아웃풋으로 좀 유명해서...
-
자라. 캬캬. 3
내일 1교시라 자러 갑니다 편안한 밤 되십쇼 오르비 소등하겠슴다
-
스플랑크니조마이 :) 슈퍼초대박날거야 :)
오 뭔가 저랑 사고방식이 비슷한 부분이 있군요 좋은 글 잘 보고 가요~
이거 진짜꿀팁인데
전 아니에여ㅠㅠ 직관적으로 푸는걸 좋아할뿐..