스포) 샤인미설맞이 손풀이+간단한 해설
게시글 주소: https://ys.orbi.kr/00069655521
주말엔 쉬는편이라 이제야 봤네요
간단한 리뷰를 하자면 킬러(15번)가 진짜 아름다운 문제였다고 생각
준킬러는 되게 쉽지 않았나 싶네요
1컷 88?(미적분)
f(k) f(-k) 전부 4^x면 곱이 2/9가 나올 수 없겠죠
매일 하던대로 넣고 벅벅 계산으로 마무리
g, h모두 f 최고차를 따라가니 최고차 대충 잡아놓고 무한대극한으로 최고차 계수 구하고,
x->1조건에서 g-h = 2f(x)인걸로 f(x) 식 작성 마무리
구하는것도 2f(4)라고 바꿔 보면 되겠죠
홀짝나눠서 한쪽은 그냥 상수*6, 한쪽은 제곱 시그마 합 공식을 벅벅
접선끼리 평행이동(x로 3만큼) 관계에 있어서 x절편 평균값이 -1이다로 놓고 직선 구해서 다시 함수로 돌아가서 함수 확정해주면 끝
14번 도형치곤 사설에 절여진건지 너무 쉬웠다는 느낌?
각 점이 전부 원점에서 거리가 같아서 원주각-중심각 관계로 Q든 P든 x,y좌표값 비가 코사인 조건에 의해 특정되는거만 발견하면 아주 쉽게 풀리죠
너무 어렵고 아름다운 문제
(나)조건에서 f(f(1)),f(f(2)),f(f(m))이 전부 같고 f(자연수) 값들 중 최소임을 먼저 느껴야되고,
최고차 음수면 계속 값이 작아지니 (나)조건을 만족시킬 수가 없고,
양수일 때는 x = f(1), f(2), f(m)을 지나고 y좌표가 대충 무언가라고 두고 다시 생각해보면,
f(1)이 1보다 크면 f(1)이 f(f(1))보다 반드시 작아지니 모순, f(1)=1
f(1)이 1이니 대충 무언가로 둔 y값도 1
또한 이러면 f’(1)>0인 개형이 되니 f(m)>f(2),
f(m)~f(2) 간격이 1보다 크면 그 사이 어떤 값에서 f(자연수)의 최솟값이 생기므로 안됨, f(m)=f(2)+1, 조건에 따라 f’(1) = 15/2
위에 작성한 식에 2대입해서 f(2) = ~~, f’(1)값으로 연립하며 마무리
(나눠주는 게 가장 깔끔한듯)
홀수인 거에 짜릿하게 반응이 오면 쉽게 풀리죠 (홀수 되는 경우는 구간설정상 t=-3k/2밖에 없다)
열린구간이라 구간경계값이 최대/최소일 수 없음을 느끼고,,
{f(x)}^2이라는 함수의 극대/극소가 최대/최소가 될 수 있다로 두면 어렵진 않게 풀리죠
개수니까 부등호조건에서 n(A3) = 3이겠죠
A짝수, A홀수의 원소개수 특징을 파악하면 A5, A10이 겹치는 원소가 두 개 있어야 한다, 0은 무조건 겹치니 다르게 겹칠 수 있는 두 케이스에서 각각 값 구하고 더해주면 끝
15번이 진짜진짜 어려웠어서 22번은 좀 쉬운 느낌이네요
라이프니츠를 쓸 경우 d?/dt, 저같이 함수로 두면 ?‘(t)를 안 구해도 되는 문제였네요
a2 a5가 같아야되고 케이스 3개나오겠죠
되는 경우 하나밖에 없고 계산벅벅 마무리
0~4까지 함수가 =<x면 된다를 느끼면 나머지는 어렵지 않죠
|x|+t 위 길이니까 그냥 y값 차로 봐도 무방하고 이걸로 식 세워서 적분으로 벅벅
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
글씨만 봐도 수학 고수인게 느껴지는 마법좋아요 0 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
자고 있나? 4
진짜 잠?? 뭐하노
-
2차 계엄은 ㄹㅇ
-
계엄령도 9수하려나
-
가비지 이닝 처리해야되는데
-
무한선포 가나요
-
공물시험 보기 시져시져
-
어..
-
또 계엄령..? 0
.
-
나 슬슬 졸린데
-
노조가 한쪽으로 쏠려있는건 알았는데 이렇게까지 빨리 올줄이야 대단하다
-
1컷까지는 그래도 1년박으면 되지않나??
-
아오 서결시치
-
하 민주당이 집권하면 북한에다 퍼주는거 기정사실인데
-
오피셜
-
일찍잘걸..
-
계엄령 사실상 끝났잖아!씨발!왜 오르냐고
-
공2미1 미적 0
88점 1등급 ㄱㄴ?
-
내일 도수분포표 나옴 = 내일 컷 발표됨
-
왜 국회의원을 들여보낸거지
-
우원식 한동훈 체포하라 ㄷㄷ
-
아까 퓰리처상 받으려고 카메라들고 용산간다는분 어디감 0
가다가 중간에 돌아왔겠노 ㅋㅋㅋ
-
내정신좀봐
-
수능 공부를 해서 앞서나간다
-
9수
-
최면어플은 존재함 그거말고는 설명이 안됨 걍
-
가비지이닝 전문 투수 ㅅㅂ 무야홍이 엊그제 같은데
-
좀 알려줘
-
지금도 간보나
-
그냥 아무것도 안하고 있다간 이도저도 못하고 탄핵될게 뻔하고 그러면 국민의힘 당...
-
자기 정치적으로 손발 다잘린건 지가 처신을 잘못해서라고 쳐도 정부에서 뭐만 할라하면...
-
그냥 총선때부터 쥐죽은듯이 있고 조용히 임기나 마치지 씨발년아
-
아무리 그래도 설법에 검찰총장까지 해먹은 양반이 정말 아무 생각 없이 일을...
-
9수평균 3
9평ㅋㅋ
-
이길 수 없는 게임이지만 누군가 나와야 하기에 나오는 것
-
때는 2024년 12월 4일 어느때처럼 아주 여유로운 밤이었어. 고등학교 2학년...
-
대령시절
-
탄핵 두번이면 0
사실상 국제사회에서도 좋게 보지않을건데 애초에 박근혜때 탄핵을 쓴게 진짜 뼈 아프네...
-
바지를 내리는거임? 진짜 이 가사에 무슨 뜻이 있을까
-
이대로 끝이겠지만...
-
석열이형 ㅅ발아 0
님땜에 3시간동안 기말 공부도 못하고 유튜브랑 디시만 주구장창 봤잖아요 내 학점 책임져라
-
ㅅㅂ 이대로 끝이면 지능 문제 아닌가
-
진짜 이딴게 국가원수? 10
하...
-
각성한 한동훈의 세계선이 이기는 거였는데 이러면 이재명 거의 확정 아닌가요??
-
뭐가 더 있는 게 아니라 진짜 아무 생각이 없는 거임
-
계엄선포하고 술먹고 자러감?
-
이쯤되면... 0
<--- 이 새끼 깜빵 보내지말고 명예 민주당원 시켜줘야되는 거 아님? 박근혜보다...