합성함수 인식부터 치환적분까지
게시글 주소: https://ys.orbi.kr/00069306012
문제 같이 읽어보겠습니다.
뭔가 그림 그리고 싶다는 생각이 듭니다.
이 정도로 그리면 되겠습니다. 노란색 동그라미 친 건 미분계수입니다.
문제를 마저 읽어볼게요
아, f(x)가 아니라 f(2x)래요. 그것도 그려줍시다.
x=1에서 미분계수가 2인거 바로 보이시나요?
이쯤에서 잠깐 딴 얘기로 샜다가 돌아오겠습니다.
(딴 얘기)___________________________________________________________________________________
이건 cos함수에 5x를 합성한 함수입니다.
5x는 x보다 다섯배 빠르게 진행되기 때문에,
cos5x 함수는 cosx 함수에 비해 모든 대응되는 구간에서 다섯배 빠르게 변합니다.
미분계수가 다섯배인 셈이죠.
또 다섯배 빠른 진행속도 덕분에, 함수는 다섯배 축소됩니다.
(딴 얘기 끝)________________________________________________________________________________
이런 이유로, 앞선 문제에서
이렇게 그릴 수 있던 겁니다.
이제 문제 마지막 부분 읽어볼게요.
음.. 이건
f(2x)의 그림만 보고 a는 1이고 b는 1/2이라고 읽으면 됩니다.
긴 설명 대신 그림 2개면 충분할 겁니다.
함수 그림은 냅두고
x, y 축만 샥 바꿔주면 됩니다.
우리가 잘 알고 있는
이 사실을 수식적으로 이해해도 좋지만,
저는 때에 따라 조금 더 기하적인 느낌으로 이해합니다.
이렇게 말입니다.
앞선 예시도 이런거였죠.
하지만 이 얘기는 f(x)와 f(3x)처럼 단순히 일차함수를 합성했을 때만 쓸 수 있는 얘기가 아닙니다.
다음 문제로 넘어가봅시다.
지수함수 f(x)에 대해 다음 값을 구해야 하는 상황입니다.
가독성을 위해 엄밀하게 적지는 않았지만 다 이해하셨을거라 생각합니다.
일단 절댓값 f(x)부터 그려봅니다.
-1에서 미불이고, 이때 오른쪽 미분계수는 ln2입니다.
이제 어떤 빨간 점이 이 곡선경로를 쭉 따라간다고 해봅시다.
이 빨간점은 y=x세제곱 함수의 속도로 곡선경로 위를 움직이는 중입니다.
y=-1일 때, x세제곱 함수의 미분계수는 3입니다.
따라서
여기 -1 부근에서 빨간점은 경로를 3의 속도로 지나가는 중입니다.
아까 문제에서 h'(a+) 구하라고 했었죠.
3의 속도로 기울기 ln2인 구간을 지나는 중이니까 답은 3ln2입니다.
근데 삼차함수에다가 대고 막... 속도 개념을 부여해도 되는걸까요?
또 잠깐 딴 얘기로 샜다가 올게요.
(딴 얘기22)___________________________________________________________________________________
아까 cos 5x는 진행속도가 일정한 경우였습니다.
그런데 진행속도가 일정하지 않을수도 있습니다.
(예전에 제가 썼던 칼럼 일부를 인용해왔습니다)
앞서 언급했던
이 사실이 이러한 이유로
이렇게 인식될 수 있는 겁니다.
시간 있으신 분들은 아래 기출 문제 풀어보세요.
귀찮으면 넘어가시구요
답은 19+20= 39입니다.
알려드린 걸 통해 풀면 인식하기가 훨씬 쉬울겁니다.
(딴 얘기 끝)________________________________________________________________________________
아직 할 얘기가 많이 남아있습니다.
합성함수 인식은 결국 치환적분의 얘기로 이어집니다.
다만 이번편에 다 쓰면 너무 길 거 같아서, 다음 편으로 넘길게요.
좋아요랑 팔로우 누르고 기다려주시면 곧 돌아오겠습니다 ㅎㅎ
0 XDK (+10)
-
10
-
머임 5시임? 3
ㄹㅈㄷ
-
덕코가 늘었다 6
많이는 못준다 진짜다
-
그게아니면 시간이 말이안된다
-
수특으로 독학할땐 이건 아니다 하고 접긴 했는데 고정 50 가능하다길래 다시...
-
할거 다햇다 자러감뇨 17
빠빠뇨
-
알라미라고 알람미션 거는 앱이 있는데 2자리 사칙연산 암산 5개 걸어놓아도 풀고...
-
대학라인 몇개바뀜?
-
솔직한 투표 부탁드립니다
-
진심 활동 하는사람 17
안자는 이유가 뭐야?
-
딸기우유 도시전설있잖슴 11
그거 내가 ㅈㄴ속아봄
-
스펙평가좀 9
키14 몸무게3 무직백수 오르비많이함 어떰뇨
-
고딩이 논문 읽으면 12
머리 굳고 용어 하나하나 다 찾으면서 꽁꽁 싸매면서 수십분~1-2시간 읽어야...
-
생2보단 가능성 높나 한번 더 하려는데 생2 버리고 갈지 고민이네요.. 24부터해서...
-
?
-
ㅇㅈ2 9
ㅎ
-
잔다 6
르크 ㅋㅋ
-
안녕하세요 10
님들 왜 다 안 잠?
-
기차지나간당 8
부지런행
-
진짜 잔다. 6
이젠 진짜로 자야해.. 진짜 잘게요..
-
내 성격먼거같음? 11
맞추면 그냥 이뻐해드림
-
존나당황스럽네 7
하시발진짜쥐새끼가오르비하는줄알고신기해하고있었는데또속았네..
-
진짜 잔다. 3
다들 빨리 주무세요 님들 자는 거 봐야 내가 자지
-
1%에 당첨되셨습니다!
-
경북대 논술 0
물리학과는 컷이 어떻게 될까요..ㅠ 너무 어려웠어서 감이 안잡히네요..
-
안자는사람 7
답글 달아줘
-
ㅈ
-
안잠? 2
진짜?
-
모아보기 누르는데 갑자기 이 화면 뜨고 프로필 누르니까 이거 뜨길래 ㄹㅇ 산화된...
-
수학 10번부터 15번까지 답은 기억이 나는데 1번부터 9번이 기억이 안남 근데 제...
-
이제 컨셉질 그만함 12
난 십상남자임
-
만일 소수가 규칙이 있다면 그 규칙을 수학적으로 증명해낼수 있는가? 어떻게 증명할것인가
-
하 ㅅㅂ 2
기하 28 침대에서 보니 쉬운 문제네 기하는 수능장에서 쫄아서 겁먹고 못풀기 딱...
-
다 갔냐 14
인증해도 되냐 이제
-
오늘 안자면 5+5 니까 뭐 많이 잔 거 아닐까? 라는 긍?정적인생각
-
올해 통통이 92인데.. 설경이 목푭니다 . 삼수는 미적으로 돌릴까요 ㅠㅠㅠ 어케할까요
-
통통이 설경… 6
올해 기준으로 언확생윤사문 97 98 1 98 99면 가려나요??
-
몇번 보기 힘들때는 금방 까먹어버림.. 좀지나면...잊혀지게 되는데 대신 메타때...
-
애기자러감 1
안잘거라는뜻
-
ㅇㅈ 3
-
진짜 잔다. 7
다들 편안한 밤 되십쇼. 샤따 내립니다 빨리 나가요 이제
-
착한사람 히히..
-
대체 다들 얼마나 속아보신거?
-
이시간까지 잠을 못이루는중
-
ㅇㅈㅇㅈ 1
하면 여자인증 인 셈이니까 여자인셈치죠
-
인생 망햇네 그냥 하
-
잘자 애기들아 13
애기들이라고 했는데 웬 틀딱이 들어왔노
-
다들 자러가니까 9
급격히 우울해지네.. 나새기왜살지
-
으흐흐 11
다이어트 중인데 으흐흐
오 cos2x 같은 일차항의 계수만 달라져서 합성된 상황만 x축 방향 축소로? 알고 있었는데
이차함수같은 게 합성되어 있어도 되는 느낌이네요
특정한 한 지점에서는 이차함수도 지수함수도 직선으로 근사할 수 있기 때문이라고 생각해도 되겠습니다
무민은좋아요
라끄리식수학적사고ㄷㄷ
https://orbi.kr/00064989284
그동안 쓴 칼럼 리스트입니다. 필요하신 분들 참고하세요
진짜 좋은 칼럼
우와...
식으로 파악하던걸 가시화해주네요
간단하보이지만 누군가 이런걸 정리해주지 않으면 써먹기 쫄리던데 감사합니다!
신기방귀
f(x)를 g'(x)의 속도로 지나가고 있다고 해야 맞을듯
g(x)의 속도 (=g’(x) )로 지나간다는 의미였습니다.
저도 둘 중에 뭘 쓸까 고민했어요
말씀해주신 것처럼
g’(x) 의 속도라 해야 와닿는 거 같기도 하네요
좋은 지적 감사합니다 ㅎㅎ
그러면 "g(x)와 같은 속도“는 어떤가요?
합성함수기울기=각위치 겉속 기울기의 곱
엔축공부하면서 떠올렸던 건데
속도개념으로 볼수도있군요!
goat...
와 제가 이해한방식이랑 거의 유사합니다
정돈된 버전?
남들한테 퍼지는게 아까운 수준의 글이네요
딴얘기, 딴얘기 끝이라고 표현해놓은게 왜이리 귀엽게 보이지ㅋㅋ 잘봤습니다
저 다 봤어요 이제 내려주세요
개추
좋은칼럼 잘보고갑니당