수학 도대체 뭐가 문제인가요?
게시글 주소: https://ys.orbi.kr/00069075375
수학 못해도 2는 받고 싶은데
6모도 그렇고 이번 9모도 그렇고
문제 수로 따지면 2등급 컷까지 1~2문제 모자라요ㅠㅜ
6모 보고 처음부터 다시 해보자는 마인드로
너기출 수1수2까지 돌렸는데도 3이 뜨는데
도대체 뭐가 문제인건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아까 10시쯤부터 피곤해서 누워서 “곧 자야지~“ 이러고 있었는데 이게 뭐시기...
-
수특 p23 2번 지문 100% 연계 난이도: 중하 수능특강 변형, 자작, 세사, 동사
-
독서 연계 4
독서 연계 제대로 하면 수능에서 체감 많이 되나요?? 소재만 같은거 나오고 아예...
-
오늘은 오르비에 아무일 없게 해주세요
-
몇인가요?
-
특모 50점.. 아아 오늘은 편히 눈을 감을 수 있겠구나 11
강민웅 센세.. 아리가또..
-
뭔 배짱인지 레이즈 달리길래 쪽빨았음 기분굿~
-
요즘 직장에서 통역이고 번역이고 일이 안 풀려서 야밤에 공부하다 또 안되고 그래서...
-
죄송합니다
-
엄청난 긴장감이랑 ㅈ같은 버저 소리 낯선 감독관들 그 속에서 킬러 딱 풀리면 걍...
-
여러분 2
힘내여
-
국어 연계 1
아직 거의 못했으면 문학 우선으로 하는게 나을까요?? 이감 중요도 보고 B가지는...
-
9모 27번은 양변 미분한 다음에 x=pi 대입해서 f(0)이 필요한 것을 확인하고...
-
늦게 n수판 들어오신분들 성공 가능성은 언제쯤 견적이 잡히셨나요 4
최근 수능에 다시 관심이 생겼는데, 입시판 떠난지 오래되어 머리가 아예 리셋된...
-
어서어서
-
수능망했네 1
야발
-
지금시기에 별로임?
-
다들 수능 잘보세요!
-
불안감이 없어진다던데 ㄹㅇ인가요?? 지금처럼 조금 시간 남았을때 불안하고...
-
전 아직 -1이에요
-
그사람의 백분위를 정확히 맞출 수 있을까? 대학은 맞추는사람이 정한다고 할때
-
미적 vs 확통 3
안녕하세요 고2 모의고사 기준으로 2등급 나오는데 미적을 하고 싶습니다 문과이긴한데...
-
맞팔맞팔 9
-
스카 혼잔데 4
춤출까
-
물리 싱모 조금만 어려워도 30점대 찍히네요 허허 지구도 44점에서 진동이고 이거...
-
우하하하하하
-
물론 몇달 뒤에 바뀔거지만...제하하하하하하!!!
-
ㅈㅅㅈㅅ
-
저는 찾아보니까 정확히는 보리놓은 꿔다자루라네요
-
ㅅㅂ 진짜 탐구 내용 싹 다 리셋된 느낌 뭔지 아시나요 지금 딱 그럼 아 ㅈ됐다
-
따뜻한 불을 쬐고 있으면 녹아요
-
양치기 드간다
-
근데 제약이 너무많네
-
위: 올해 아래: 내년 홍대 세종이랑 외대 글캠 사라짐 중대 안성은 살아남음 추가로...
-
오노추 0
-
나름 그때 당시에 시의성이 있었어서 잘 지었다고 생각함
-
이시기에 뭐하시나요.. 실모 치면서 약점노트 정리한거 보면 될까요
-
. 1
-
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
. 그 시간에 애니 한 편보는게 낫지 않음?
-
인생 고민 1
안녕하세요 수능을 12일 앞두고 있는 재수생입니다. 제가 재수를 하면서 10개월동안...
-
합격찹쌀떡 피날레 모의고사(한대산 T)...
-
사만다? 3
사문 실모 중에 사만다가 유명하던데 사만다는 어디서 나온 모고인가요.? 잘몰라서..
-
문학 싫어 5
난 문학이 너무 싫다 난 문학이 너무 싫다 난 문학이 너무 싫다 난 문학이 너무...
-
국어 86 수학 82(1번틀림 씨발 뭐하는 새낀지) 나머지 14,15,21,30...
-
이번 겨울방학 국어 영어 수학 단과 제발!! 추천좀 해주세요 10모 국어 높2 영어...
-
https://orbi.kr/00069586976/ 난 좀 더 생산적으로 살았겠지
-
그럼 수능 전까지 1일1실모??
-
커피 너무 비싸 2
레쓰비가 훨씬 낫다 아니면 믹스커피 ㅇㅇ
몇번 틀렸는진 모르겠지만 틀린 것 중 풀 수 있었던 문제가 분명 있었을 것
풀 수 있는 문제는 확실히 다 풀어내기
그정도 점수대면 그래도 문제풀이 기법 자체를 그렇게 많이 모르는 편은 아닌데
뇌를 거치지 않고 기계적으로 반응해서 풀이가 나오는 비중을 줄여나가야 합니다.
저도 이게 문제라고 생각해본적이 있어서 고치려고 해본적이 있는데.. 풀이할때 근거 생각하면서 해보는 방식을 말씀하시는 건가요??
그렇죠. 내가 어떤 식을 보고 어떤 행동을 할 때 그 행동을 왜 하는지에 대한 근거가 항상 있어야 됩니다.
기출문제로 공부하다 보면 반복적으로 자주 나오는 표현들이 있고 나도 모르는 사이에 아 그럼 이 조건이 나오면 이렇게.. 이렇게 하면.. 저렇게 풀리더라 하는게 머릿속에 각인이 됩니다.
그런데 기존에 본 것과 형태가 비슷하다고 해도 접근법이 완전히 다른 문제들이 얼마든지 출제가 될수 있거든요?
또 그 방식대로 접근을 했는데 실상 그게 아무 의미를 갖지 않는 경우가 있을 수도 있습니다.
예를 들면 이번 모의평가 21번이 그렇습니다.
별 의미 없는 수식에 아 이걸 k부터 k+2까지 f'(x)를 적분하는.. 정적분으로 정의된 함수..
이렇게 접근해서 식을 써놓아봐야 그게 결론에 도달하는데 별 도움을 주지 않거든요?
근데 이 문제야 그냥 단순 계산 문제라 쉽게 풀수 있지만 조금만 꼬아서 어렵게 내보면 그런 얕은 배경지식들과 관성적인 풀이가 오히려 방해가 될수도 있다는 것이죠.
도형문제같은걸 풀때도 마찬가지고요...
이런것들을 하나씩 줄이면서 손이 나가기 전에 머릿속에서 먼저 생각을 정리하고 근거를 하나씩 만들어가면서 차분하게 풀어나가는 연습을 해야 점점 고득점으로 나아갈수 있어요
이번 21번에서 제가 정확하게 그렇게 풀이하고 있었네요ㅠ 조언 토대로 앞으로 해보겠습니다! 긴글로 써주셔서 감사드려요!!
실모돌리자
제 성적대가 실모 돌려도 되는건가요??ㅠㅜ