수학 급합니다!!! 다항식에서 미지수의 차수는 무조건 자연수인가요??
게시글 주소: https://ys.orbi.kr/0006895897
제목이 곧 내용입니다~~ 카이스트 면접 대비하는데 헷갈리네요,,ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어릴때 와이책 보고 외계인이 잡아갈것같아서 창문 두개 다 꼭 닫고 커튼치고...
-
아니아니 변표 2
정시에서 변표를 안 쓰고 통합 변표를 쓰면 과탐 가산점 없으면 사탐이 매우매우...
-
동생꺼라 한 번만 봐주세요 ㅠㅠ
-
걍 할게 없네 ㄹㅇ
-
개사기 같음 돈복사 버그 거의 유료주차장급인데 돈은 엄청벌음
-
개웃김ㅋㅋㅋ
-
고대 정시 내신 0
체육,통합사회,생1,고급수학 이런거 전부 다 포함임?
-
나 씹덕됨 0
바이 왤케 잘생김????
-
홈스쿨링 하다 올해 수능 짧게 준비해서 보고 내년 수능 제대로 준비해보랴 하는데...
-
서울대식 0
410.5에 내신 cc라.. 설공쓰기 쫄리네요 ㅜ 원래 그렇게 높은 과가 아닌데...
-
부평에 ㅌㅜㅇㅓㅂㅓㅅㅡ 여기 새로운 곳이던데.. 스카 분위기 나더라고 설명회...
-
센츄는 나랑 상관없는 얘긴 줄 알았는데 이게 되네 근데 10렙 못찍어서 광광 우럭따....
-
겨울만 되면 목이 간지러움… 목 안이라고 해야하나? 성대? 너무 간지러워서 입에 손...
-
어떻기 쓰느냐가 중요한거지
-
정석민 박광일 심찬우 국어를 국어로 바라보는 샘들임 이분들 열심히 듣다보면 자기가...
-
이거 이상한거 맞죠..? 뭔가 하나는 틀린 거 같은데 어떻게 해야되나요
-
가천대 의대 논술 이번주 일요일 맞는거죠? 토요일이라 그러는 분이 있어서
-
안녕하세요. CRUX 차수영입니다. 수능이 끝나고 잘 쉬고 계신지요. 오늘은 다소...
-
이맘 때 학과 고를 때 도움 되는 이야기일까 하여 적어봅니다. 인어문 학과 보시면...
-
어떡하지 다른 건 재미가 없어 여기서 시던잖은 수능 얘기하는게 젤 맘이 편해
-
물리/화학 백분위는 1,2 다 터져있는데 2는 그나마 깡표라도 좀 나아서 이득...
-
씨름 10년차 아마추어 100명 중 1등하기 씨름 1년차 윤성빈 이기기 난 전자가...
-
9평 수능 100점입니다 평가원만큼 깔끔하고 명확한 논리와 선지가 없음
-
메가 합격예측 0
메가에서 현재 80프로정도 뜨면 실채점 뜨더라도 가능하다고 생각할 수 있나요..?...
-
원투는 +3점 투투는 +5점 가산점 주는데 이미 하던 생1 버리고 노베 화2 시작할...
-
ㅈㄱㄴ
-
저는 문학은 몰라도 비문학은 무조건 독학하면서 독해력 향상시키는게 실력 향상하는...
-
거긴 더 빡세지 않나 이미 의대 걸어놓은 애들이 바글바글 할텐데 응 망해도 의대야 하는 마인드
-
jpop 추천해주세요 25
유명하지 않은 것도 괜찮으니 추천 부탁드립니다..
-
화2 주문 완 6
50점 한자리 예약이요~
-
근데 올해는 기출에 매진하면 잘볼수 있었다가 맞나요? 3
그냥 궁금하네요... 이번수능 잘보신분들의 의견은 어떠신가요?
-
종이가 좋은뎅
-
인생 ㅠㅠ이
-
25만 질러서 원기베리 4셋 깠는데 까만펫? 자석펫 재료 8개가 나왔음 그거 다...
-
얼버기 6
오늘도힘차고좋은아침
-
컷 내려가고 나만 점수 그대로일텐데 아쉽다
-
꿈돌이 만나러 가는 중이랍니당 허헣
-
내년에도 의대생 누워야되면 강제 +1수라서
-
강원의vs 연원의 어디가 더 낫나요?
-
6월 21211 9월 22122 수능 12221(가채점) 셋다 비슷하구만
-
키미오 사가시 하지메타요
-
님드라 이거 봐 13
-
수시납치 6
수능 성적이 백분위로 언매 97 미적 85 영어 2 생명 89 지구 100인데...
-
여 김장겸, '나무위키 투명화법' 발의…"국내법 적용받게 해야" 3
[서울=뉴시스] 한재혁 기자 = 김장겸 국민의힘 의원은 21일 일정 규모 이상 해외...
-
지금 연미의 건국의 이런 곳 텅텅 빔 ㅋㅋㅋ 지금은 다들 행복회로를 돌리는 시기라는 것..
-
음 수능 끝나고 논술 준비하면서 할 거 없어서 2511 지구과학 오답률 보면서...
-
오르비 유저분들의 생각이 궁금합니다
-
귀찮..
-
댓글보면 가슴이 답답해짐 PC방에서 외국인이랑 싸우는 기분
x+3 -> 3은 0차 아닌가요...?
아! 상수항 제외하고요!! 죄송합니다
...문득 이 질문을 보면서 - 저도 제대로 답은 못하겠지만 - 처음부터 공부 다시 해야겠다는 생각이 드네요. 차수가 음수면 분수함수고, 다항함수가 아닌가...? 싶기도 하고, x의 루트2승이면 어떡하지...? 싶기도 하고... 아무튼... 답은 못드리지만 배워가요-
지수법칙 유도과정생각해보시기 바랍니다
일단 지수법칙은 정수에서 정의합니다
그리고 a^0을 정의하고 음수로까지 확장합니다
그리고 이것을 분수로서 정의하죠
그리고 거듭제곱식을 정의하고 유리수로서 정의합니다. 즉 분수꼴은 무리식이라는것을 증명할수있죠
실수는 교과과정상 그냥 받아드립니다
대충 이정도에서 서술하면 적어도 감점은 없을것같네요
오... 생2괴물 키랄님이 댓글을 달아주시다니..ㅎㅎ
지금 문제의 조건이 x^a 에서 a가 0초과라고 제시되어 있는데 이걸 미분한 ax^(a-1)에서 a-1이 0이상이라고 봐도 되는지 궁금해서요~~
지금 정확히 어떤지점이 문제가 되는지 명백하게 다시 좀 써주시겠어요?
만일 a가 '음수가 아닌 정수'라는 제한조건이 안나와있다면 a-1을 0이상이라고 볼수 없습니다(음수가 될 수도 있기 때문에)
그런데 만일 a가 '음수가 아닌 정수'라는 제한조건이 걸리게 된다면 a-1을 0이상으로 봐도 무방해서 이렇게 질문 드립니다
그런데 밑에 lemonaid님이 올려주신 거에 따르면 후자가 맞는것 같네요!!
정말 감사합니다~
다항함수의 미분에서 양수일때는 인수정리를 통해증명하고 음수는 몫의미분으로 증명하고 유리수는 음함수미분 실수는 로그 미분으로 증명된상태인데 어떤지점이 이해가 안가시는건가요?
일반적으로 차수내리고 하는거를 그냥 배우긴하지만 일단 교과과정내에서는 실수까지 확장시켜놓고 학습시키고 있습니다
일반적으로 집합 R 위에서의 X를 변수로 하는 다항식은 다음과 같이 정의한다.
anxn + an-1xn-1 +...+ a1x + a0
단, n은 음이 아닌 정수이다. 이때 a0, a1, …, an을 다항식 f(X)의 계수(係數), ai≠0인 i의 최대값을 f(X)의 차수(degree)라 하고, deg f(X) 또는 deg f로 쓴다. an이 0이 아니면 f(X)는 X에 대한 n차 다항식이다. f(X)의 계수가 모두 0일 때는 그 차수는 정의되지 않는다.
[네이버 지식백과] 다항식 [polynomial, 多項式] (두산백과)
차수가 실수로 확장되는 건 다항식으로 보지 않는 것 같은데... 제가 틀렷나요?
차수를 실수로 확장시키는 건 따로 '다항식'이라고 부르지를 않는 것 같습니다
제가 면접 문제를 풀면서 이해가 안된 것은 문제에 '다항식'이라는 조건이 그냥 툭 던져졌는데 여기에서 x의 차수를 0이상인 정수로 봐야되지 않을까~ 싶어서 질문드렸습니다!! 이렇지 않으면 문제가 안풀려서요~~
P.S:UAA모의고사 너무 잘풀었습니다!ㅋㅋ(공동저자분 중 1명 저희 학교..ㅋㅋㅋ)
아 약간 혼선이 있었네요
제 말의 의중은 그 알고계시는 미분법은 다항함수던 아니던 편하게 사용할수있다는 의미였고 다항식의 정의는 음이 아닌정수가 맞습니다
예를들어 기출에서도 극한문제에서도 다항함수라고 주어진경우에는 차수를 결정지을수있다
여기서도 자주 사용되는 이론이기도 합니다
제가 말씀드리고 싶은거는 지수의 확장에서 배운내용에 의거하면 음수인경우는 분수꼴이므로 다항식이 아니고 약분되지않는 유리수형태인경우 무리수임을 인지하게 함으로서 다항식이 아님을 그냥 고교수준적으로서 설명해드릴려는 의중이었습니당
네 키랄님 정말 감사합니다!
넵! 도움되셨다면 저도 기쁘네요!
일반적으로 집합 R 위에서의 X를 변수로 하는 다항식은 다음과 같이 정의한다.
anxn + an-1xn-1 +...+ a1x + a0
단, n은 음이 아닌 정수이다. 이때 a0, a1, …, an을 다항식 f(X)의 계수(係數), ai≠0인 i의 최대값을 f(X)의 차수(degree)라 하고, deg f(X) 또는 deg f로 쓴다. an이 0이 아니면 f(X)는 X에 대한 n차 다항식이다. f(X)의 계수가 모두 0일 때는 그 차수는 정의되지 않는다.
[네이버 지식백과] 다항식 [polynomial, 多項式] (두산백과)
정말 감사합니다!
음이아닌 정수 n에 대하여 fx= anx^n+an-1x^n-1 +...+a0 [an~a0는 실수]를 다항식 이라고 부르는거 아닌가요?