[강윤구T] 고정관찰과 쉽알(feat. 코어테마 특강 개강안내)
게시글 주소: https://ys.orbi.kr/00068011501
안녕하세요 강윤구입니다.
(이전의 글 중
조건의 필연성을 부여하지 말자. 상황에 맞춰서 필요한 조건을 찾는 방식으로
문제해결의 방향성을 바꾸자. (문제해결의 올바른 방향성 https://orbi.kr/00067506624)
게시글을 보시고 이 글을 보시면 좋습니다.)
오늘은 고난도 문제에 대해 말씀드려보도록 하겠습니다.
현재 수능수학에서의 고난도 문제는 단 하나만 출제되고 있습니다.
물론 이제 대다수의 학생들은 문제마다 낯설고, 문제가 다 달라보이는데 무슨 소리냐
라고 생각하겠지만 이는 초보자의 관점이기에 그렇게 보이는 것입니다.
초보자는 세분화를 통해 부분부분을 이해하고 싶어하고
실력자는 거시적인 시각으로 통합적으로 이해하고 싶어합니다.
우리도 기본공부를 끝낸 시점에서는 통합을 이루어내야 한다는 것입니다.
수1, 수2, 미적을 공부하는 것이 아니라 수능수학을 공부해야 한다는 의미입니다.
그러면 현재 수능수학의 고난도 문제는 어떤 특징이 있는가?
''정해지지 않은 것이 여러 개 있다.''
이것 뿐입니다.
점화식이든, 그래프 추론문제든, 도형의 해석문제든 우리가 어려워하는 문제는
모두 정해지지 않은 것이 많아서 어려움을 느끼는 것입니다.
예를 들어볼까요?
삼각함수 활용문제를 만났는데 삼각형이 1개밖에 없습니다.
이 문제가 어려울 수 있을까요? 아니죠. 그냥 법칙을 쓰면 끝납니다.
점화식 문제를 만났습니다. 점화식도 있고, 초항도 있습니다.
이런 문제가 어려울 수 있을까요?
그래프 문제를 만났습니다. 그런데 함수가 f(x)뿐입니다.
이런 문제가 어려울까요? 역시나 아닙니다.
문제가 어렵게 느껴지는 것은 구성요소가 여러개 있으며,
그 요소들이 정해져 있지 않기 때문에 어려움을 느끼는 것입니다.
삼각형, 원의 개수가 많아서 어디서부터 법칙을 써야할지 모르는 문제
f(x), g(x), h(x) 함수가 여러 개가 제시되어 있는 문제,
점화식의 항이 구체적으로 정해지지 않아서 확실하게 나열할 수 없는 문제
등등 이렇게 정해지지 않은 것이 여러 개 있기 때문에
어디서부터 어떻게 손대야 할지 모르고 그 시작의 어려움때문에
문제가 낯설다. 어렵다. 킬러다.
이렇게 받아들여지는 것입니다.
그러면 이 문제를 어떻게 해결하는가?
다음의 세가지만 명심하면 됩니다.
1. 고등학교 수학에서 동시에 변하는 것을 한번에 관찰할 수는 없다.
고정하고 관찰한다.
https://www.youtube.com/watch?v=6OVWQVyFcgo&ab_channel=%EC%9D%B4%ED%88%AC%EC%8A%A4%EC%B1%84%EB%84%90
2. 고정할 때는 쉽고 알고 있는 요소, 즉 쉽알을 고정하고 해석을 시작한다.
그리고 그 구성요소의 관계를 이용하여 쉽알의 정보를 모르는 것으로 넘긴다.
https://www.youtube.com/watch?v=evINCSU_jhk&ab_channel=%EC%9D%B4%ED%88%AC%EC%8A%A4%EC%B1%84%EB%84%90
3. 우리는 아무것이나 고정하지 않는다. 결과를 통해 고정해야할 것을 미리 예상한다.
그리고 검증한다. 즉, 예상과 검증으로 동시에 변하는 문제를 해결한다.
글로 적기에는 너무나 중요하고, 수능을 관통하는 핵심이기에
영상으로 올립니다.
저 짧은 영상만으로도 고난도 문제라는 것이 무엇인지, 그리고 그것을 쉽알이라는
너무나도 당연하지만, 많은 학생들이 간과하고 있는 두 글자로 돌파할 수 있음을 깨닫게
되실 것입니다.
수능은 잡스러운 지식으로 내 머리를 채운다고 잘 보는 시험이 아닙니다.
인간의 본성을 논리적인 생각으로 극복하여 체계적인 생각을 완성함으로써
정복된다고 보시면 됩니다.
쉽알, 굉장히 간단하고 당연한것 같죠?
하지만 사람은 모르는 것에 집중하고, 그것에만 시선이 가게 되어있습니다.
작수 22번도 누구나 존재하지 않는다는 결론에만 집착할 때,
제대로 공부한 사람은 그 이외의 알고 있는 것으로 문제를 해결해 나겠죠.
영어의 빈칸채우기를 빈칸을 보고 알 수 없듯,
수학도 쉽고 알고있는 것으로 모르는 것을 구해나가는 것입니다.
저 위의 두 영상을 보고 공감이가며
제대로 된 공부, 합리적인 공부를 하고 싶으시다면
5월 12일부터 개강하는 4점공략법 코어테마 수업을 들어보시면 좋을 것 같습니다.
4점공략법 코어테마(굳이 6월 대비라고 칭하지는 않겠습니다.)
1. 수강대상 : 4점공략법 스타터를 완강한 학생, 혹은 2~3등급 이상의 학생
2. 강의시간 : 5월 19일 개강(5월19일~6월 2일)
일요일 오전 9시부터 12시반까지 3회 특강
3. 강의내용 : 4공법 요약, 점화식, 삼각함수 활용, 그래프해석, 적분
4. 교재 : 프린트로 진행
입니다. 이 특강 듣고 6모 후 4점공략법 본편 인강 수강하시는 것도 좋으니
많은 관심 부탁드립니다.
4점공략법 본편을 인강 혹은 현강으로 수강한 학생은 오지 않으셔도 됩니다.
들으신 것 복습하세요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
번호별문제 다 이렇게 갖다박으면 ㅇㅇ 물론 이문제들 싹다 처음 보는거라고 가정하고 ㅇ
-
덕코 1
다 털었다 이제슬슬장례식을
-
내신은 3.6 모고는 44344인데 우리학교가 수시로만 학교를 보내서 정시를 그다지...
-
피곤해 2
하암
-
고3 부터 왜케 살쪘냐는 소리 많이 듣네
-
정시 기균 라인 좀 잡아주시명 감사하겠습니다 ㅜ
-
3번에 D국이 국민들 입장 물어보는거 반대친 사람 있을까요?
-
마음을 어떻게 추스려야 할지...
-
둘 다 붙으면 어디감? 대학 자체 네임벨류랑 졸업 후까지 종합적으로 봤을 때 어디가...
-
14 고사장 (컨버전스홀)
-
사람 왤케 많냐 0
음
-
떴으니까 올리지ㅋㅋㅋㅋ
-
손샘은 비문학이 강한데 문학이 어렵다하니 문학도 해야겠고 문학이 더 시간...
-
댓이나 쪽지 남겨주시먄 감사하겠습니다...
-
후무많어중. 후많중 후중 후ㆍ듕
-
1차는 붙었는데 최저를 못 맞춘 대학이 있습니다. 아직 면접 준비가 하나도 안 되어...
-
도란 귀엽네 11
ㅇㅇ
-
기억이 너무 명백한데 후자임? 2번 3번 이슈인데 마침 2 랑 3은 헷갈리기 좋은 숫자긴하긴함
-
가정했던 최악의 상황이 '대부분' 펼쳐진다는 것임
-
24수능 14 25수능 14,15 번 정도의 문제 나형이면?
-
그냥 평소에 오르비 눈팅이랑 가끔 댓글만 달았는데, 칸타타님이 근거 없이 “내가...
-
둘이 맞팔도 했네ㄷㄷ 15
사귀는 거 맞다니까
-
소름돋아
-
꿀팁좀요..
-
97뜨면 진짜 사고인데.....
-
엣큥~ 그건 기여운 와타시였네! 밥 먹기 전에 심심했음 ㅈㅅ
-
애증의 관계임. 연애한지 좀 된 장기 커플인데 이제 볼 장 안 볼 장 다 봐서...
-
6일에 받으려면 가야되는거?..
-
물리 6 9 수능 50 50 48에 과외경력+학원경력 있음 수능과외 하면 얼마 받을 수 있음??
-
무슨 맛을 마실까요 블랙 제외
-
제가 심판봐드림
-
수학 모르겠어잉 6
(fㅇf)(1)이면 f(f(1))이니까 그냥 f(1) 구하면 a/4 아닌가? 왜...
-
둘다 채점했는디 ebs 백분위가 더 맛있드라구여.. 여러분들도 메가보다 ebs가 더...
-
가군 부산대학교 경영학과 나군 부산대학교 경제학과 이런식으로 지원 가능한가요?
-
헤헤ㅔㅎ헤흐흐ㅡ헤헤ㅔ흐
-
이번주에 중앙대 외대 이화여대 논술있는데 이 성적대이면 가야겠죠?
-
1컷 88가능성 충분히 있다고하셨는데 2409가 1컷이 88이었으니 올수가 작년...
-
우우 6
아파요 속이안좋아..
-
어딘가 이상하다 싶은놈들은 사실 무대응으로 일관하는게 나은것같음 한번 상대해주기 시작하면 끝이없다
-
물1vs물2 2
재능빨은 물2가 더 타나요 둘다 하지말라고 하거나 차라리 사탐하라고 댓글다는 순간...
-
뭐임진짜 아니시발 원점수라도 알려주던가 그것도안됨?
-
말그대로 잘보고싶다면 개념을 많이 보는 것보다 개념 가볍게 읽고 (회독) 모의고사나...
-
평가원 이사람들 5
지금 오르비보면서 팝콘뜯고있는거 아니겠지
-
1컷 88초과라고 보시는거 맞죠?
-
없나요 하.
-
줬다 뺏는 게 더 기분 나쁘지 않음?
-
연고공 인설약 3
연대 고대 공대 vs 이대 약대 동국대 약대 입결 상관 없이 미래 전망이나 전체적인...
4공s 열심히듣고있습니다 부지런히 커리따라가겠습니다
굿입니당
어디에서 신청해야 하는지 알 수 있을까요?
내일 신청링크가 생긴다고 하네요
복영 제공되나요?
수능까지 제공됩니다.
현강 4공법이후 커리랑 언제쯤 개강하는지 알수있을까욥
강북청솔로 특강와주세요 ㅠㅠ
60점대는 듣기 어렵겠지요....