최대 최소 극대 극소 (Global/Local + Max/min)
게시글 주소: https://ys.orbi.kr/00066863129
뭔가 혼자 엄청 크거나 혼자 엄청 작은 값을
extreme value라고 합시다.
이차함수 f(x)=x^2+x+1에 대해
x=-1/2일 때 함숫값 3/4은 extreme value입니다.
혼자 작기 때문입니다.
우리가 최솟값, minimum이라 부르기도 합니다.
근데 이렇게 최댓값이나 최솟값은 아닌데
그 근처에서 바라봤을 때 최댓값으로 생각할 수 있거나
그 근처에서 바라봤을 때 최솟값으로 생각할 수 있는
그러한 값들이 있습니다.
얘네도 extreme value로 분류해줍니다.
그런데 앞에 봤던 최대, 최소와는 구분해줍니다.
local extreme value라고 해줍시다.
따라서 최대, 최소는 local maximum, local minimum과
구분하기 위해 global maximum, global minimum으로
불러 줍시다.
따라서 extreme value를 위와 같이 분류해봅시다.
최대와 최소가 있고.
그 근처에서만 최대 혹은 최소로 볼 수 있는 애들이 있고
멀리서 봐도 최대 혹은 최소로 볼 수 있는 애들이 있습니다.
교과서에는 다음과 같이 소개합니다.
Local Minimum : 극소
Global Minimum : 최소
Local maximum : 극대
Global maximum : 최대
근데 저는 극, 최보다 local, global이 알아듣기 편해서
local max와 local min, 그리고 global max와 global min으로
부르기를 좋아합니다. 더 직관적이라 생각하기도 하고요!
극, 최는 우리가 극상위권, 최상위권 할 때는
극상위권이 훨씬 공부 잘하는 집단을 일컫는 표현으로 쓰곤 하는데
여기선 특정 지역에서만 센(?) 애들을 극이라 하고
전지역에서 센 애들을 최라고 하니 반대 느낌이잖습니까.
뭐 아무튼 돌아와서...
우리가 후에 수학2에서 a를 정의역의 원소로 하는 어떤 함수 f(x)에 대해
x가 a에 한없이 가까워질 때 f(x)가 한없이 가까워지는 값이 존재한다면
그 값을 함수 f(x)의 x=a에서의 극한값이라고 하고
함수 f(x)의 x=a에서의 극한이 수렴한다고 합니다.
그리고 x=a에서의 극한값과 함숫값이 일치하면
함수 f(x)가 x=a에서 연속이라고 합니다.
만약 어떤 닫힌 구간 [p, q] 내의 모든 x값에 대해
함수 f(x)가 연속이라면 우리는
구간 [p, q]에서 함수 f(x)가 연속이라고 합니다.
참고로 닫힌 구간, 열린 구간을 논할 때는
위와 같이 생각합시다. 좌표평면에서 (Cartesian Coordinate)
점의 좌표를 논할 때에도 (p, q)와 같은 표기로
x좌표와 y좌표를 나타내지만... 구간 끝을 포함하지 않는
열린 구간을 이야기할 때도 (p, q) 표기를 사용합니다.
위 내용이 최대 최소 정리 혹은
The Extreme Value Theorem입니다.
쉽게 말해 고1 수학 입장에서는
실수 전체의 집합에서 연속인 다항함수에 대해
어떤 닫힌 구간을 잡으면 그 구간 내에
반드시 다항함수의 최댓값과 최솟값이 존재한다는 것입니다.
아까 보았던 이 그림에서는 구간 [-1.5, 3]에서
x=-3/2일 때 최솟값, x=3일 때 최댓값을 지니죠?
즉, 구간 [-1.5, 3]에서 주어진 함수 f(x)=x^3-x+1는
x=-1.5에서 Global Min을, x=3에서 Global Max를 지닙니다.
구간을 [-0.75, 1]로 좁혀보면 어떨까요?
이러면 더 이상 x=-0.75나 x=1과 같은
구간의 끝값에서 함수가 Max/Min을 지니지 않습니다.
대신
여기랑
여기에서 각각 Local Max와 Local Min을 지닙니다.
뭐 이런 식으로 생각하자는 것입니다.
1. 연속 함수는 닫힌 구간에서 항상 Max / Min 존재
2. 구간 [p, q]에서 f(p) 혹은 f(q) 혹은 Local Max 혹은 Local Min 이
최대, 최소가 될 수 있음 (Global Max 혹은 Global Min이 될 수 있음)
어떻게 보면 Local Max/Min일 때
Global Max/Min이 되는 기회를 잡는 셈이죠.
우리 고등학교에서도 1등을 하지 못하면
전국에서 1등을 하지 못하고
대한민국에서도 1등을 하지 못하면
전세계에서 1등을 하지 못한다는 생각으로
경쟁에 치열하게 임해보시면 어떨까 하는 생각이 듭니다.
물론 이는 진보와 보수라는 이념의 문제,
좌와 우라는 이념의 문제와 깊이 연관되어 있지만
어쨌든 공부를 하는 우리 입장에서는
대학수학능력시험 혹은 내신 평점?이라는
결과물을 얻어낼 때까지
경쟁에서 패배한 자의 마음 가짐으로 임하기보다
반드시 승리해내리라는 마음 가짐으로 하루 하루를 보내는 것이
좋지 않겠습니까.
그렇다고 같은 반 친구, 같은 학교 친구를 경쟁자로 바라보진 마시고...
높은 확률로 다른 학교 친구를 경쟁자로 인식하는 것이
더 도움이 될 확률이 큽니다.
외대부고 등 특수한 학교 몇 군데 말고!
이러한 맥락에서 이차함수의 닫힌 구간에서의 최대 최소를
생각해보시면 앞서 학습한 Global/Local + Max/Min의
네 가지 경우의 수와 The Extreme Value Theorem에
근거해 이해해볼 수 있으실 것입니다.
이렇게 공부해두시면 후에 수학2 공부할 때
이렇게 공부하지 않은 학생들에 비해
더 쉽게 이해도를 높여볼 수도 있을 것이고요!
+ Local Max라고 Global Max는 아니지만
Global Max면 당연히 Local Max이기도 하겠죠?
우리 학교 전교 1등이 전국 1등이라 단정지을 수는 없지만
전국 1등이 우리 학교면 당연히 우리 학교 전교 1등인 것과
같습니다. (정시 기준) 비슷한 방식으로 Min도 이해해보세요~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
휴학에 참가한 의대생들 전원 사형집행 하기로 결정 25학번 수업은 무리없이 진행될 예정
-
검사했는데 결과는 안뜨고 다시하려면 다시하라그러고 옘병할
-
28수능부터 시행되는 통사통과로 어떻게 변별할지 너무 기대됨 1
개같이 기대된다
-
나도 작년에 못맞추긴했고 난 맞췄는데 올해 최저 충족률 어케 되려나... n수...
-
연고대 문과 가려면 사탐선택자는 연대로, 과탐선택자는 고대로 3
연고대 문과 가려면 사탐선택자는 연대로, 과탐선택자는 고대로모일수밖에 없다라는...
-
국어 잘한다고 생각했고 이때까진 망해도 백99는 떠왔는데 올수는 진짜...
-
피램 병행 가능한가요? 재수생임 현역 X
-
ㅈㄱㄴ
-
정승제쌤이 어제 롯데월드 간다는건 이미 예견된 일이었음뇨 개때잡 확통 2단원...
-
제가 국어 시간이 오래걸리는 이유가 이거 때문인거 같습니다. 2
예를 들어 8번 문제에서도 1번 선택지에서 "한성순보가 간행된 취지는 서양에...
-
인스타 내리다 떠서 봣는데 H2O의 약자가 뭔가요? 화학고수님 답변부탁드립니다...
-
우리의승리다
-
산속에 난 길이어서 ㄹㅇ 개무서웠음
-
전공탱이라 가야돼...
-
어릴때는 포뇨 아빠가 포뇨 괴롭히는거 때문에 겁나 싫었는데 지금 다시보니까 포뇨...
-
대성은 무조건 수학 1타가 한석원이었던거 같은데
-
난 햇빛만 존나나는데
-
28학년도부터는 정시 100프로로 대학 가는거 없어지죠? 3
내신 구리면 정시길도 막히는.... 그럼 자퇴생이랑 장수생들은 어떻게 되는거지?
-
아아 기대된다 2
나는 어느 대학을 갈것인가!! 어느 지방에서 캠퍼스라이프를 즐길것인가!! 킥킥킥킥킥킥킥
-
예쁘긴하다 햇빛에반사되면더예뻐짐
-
종강하고 클쓰보내고 바로 돌입할 것 식단 + 유산소 + 근력 이렇게 간드앗
-
국어 ㅠㅠㅠ
-
식메추 (식사 메뉴 추천)
-
올해 수능친 현역인데 국수영은 222 뜰것같은데 과탐 물1 지1이 4가 떠서 투과목...
-
나만그냥잤지
-
으흐흐히흐히히 30
화1 죽어라 히흫히히히흐히
-
맛있게. 먹어라.
-
25학년도 의대 모집 정지 (new!) 한의학은 정말 과학적인 학문인가? 의대...
-
수1을 너무 못한다..
-
수능 끝난 지금도 여전히 이해 안 가는 유일한 문제 7
9평 국어 10번 ㅋㅋㅋ.. 틀린 애들은 국어 못하는거란 말 볼때마다 짜증났음 내가...
-
주로 쓰는 손이 좀 박살났는데 ㄱㅊ?
-
공스타 현역들 10
ㅋㅋㅋ 6,9모 엄청 화려한 애 비활타더니 아예 안오네
-
커피는 먹다가 머리가 너무 아파서 이젠 안먹으려고요… 너어무 졸린데 다들 잠 어떻게...
-
이제서야 구렁텅이에서 벗어난다
-
난 엄마 보고 밥이나 해! 라고 큰 소리로 외침
-
얼마나 잘봐야함? 작년 입결로따지면 의대제외하고 서울대수리과학부가 가장 높던데
-
유급이 있는가? > 없는 학교가 있음. (전국 모든 의치한수는 유급 제도를 구비)...
-
물2지1하까..? 14
물2 어때요..? ㅋㅋㅋ....
-
어떤거가 더 공부양적고 쉬울까요 생윤이랑 같이할거에요 내년에 더표점높게 나올...
-
롯데월드 왔는데 4
줄 왤케 김;;
-
자기전에 비타민 B 비타민 c l 아르지닌 카르티닌 타우린 먹고 일어나서 카페인...
-
저 엿같은 정지떡밥 그만좀굴려라 수능 전에 굴리는건 그렇다했는데 수능 후에 굴리는건...
-
의사들이 한의사, 간호사도 못잡는데 정부를 어캐이김 2
의사가 진짜 강했으면 이미 우리나라 한의원 전부 문닫고 간호사는 무급전속노예로 전락했음
-
수업가기싫오
-
오늘부터 아니었나..
-
5%면 꽤 큰거같은데 언미사탐으론 힘들겠죠..? 내신 별로 안좋으면?
-
https://orbi.kr/00070166548/%EC%98%AC%ED%95%B4%...
-
대석열의 알빠노 마인드가 좆으로 보이냐?
Local을 relative라고도 해서 괜히 헷갈림
동네 최대, 상대적 최대... relative max/min이라고도 하는 것은 처음 알았네요
왜 극소 극대일까
국소 국대는 안되나
국소성의 원리 ㄷㄷ
불연속 극대극소 설명 좀 해주세용! 전 요즘 그걸로 문제 만들어 먹고 있습니당ㅋㅋ
불연속 함수에 대해 극값을 찾는 상황 말씀하시는 것인가요? 본문에 소개된 Local Max/Min의 정의에 따라 판단하면 되기 때문에 추가적인 설명이 필요할까 싶습니다 ㅋㅋㅋㅋ 물론 처음 배울 땐 불연속 함수가 어색해서 어라 하게 되는 것은 잘 알고 있다만
문제 구경하러 갈게요!