극한 계산 때 주의할 점
게시글 주소: https://ys.orbi.kr/00066464692
안녕하세요. 여기서 이런 칼럼글은 어째 처음 써 보는 것 같아 시작을 뭘로 해야 할지 애매하네요...
극한 문제를 풀 때 여러 가지 편법이 있죠. 로피탈이라던지 테일러 급수라던지...
이런 방법을 쓸 때에는 다 전제조건이 있어서 헷갈린다거나, 아니면 이게 교육과정 밖이라서 쓰기 싫다거나 하는 이유로 순수하게 극한만으로 풀려는 분들도 요즘 많이 보입니다. 좋은 학습방법이죠.
다만 순수하게 극한만으로 풀 때에는 여러 주의할 부분이 있습니다.
1. 극한 계산을 할 때에는 식 전체를 한 번에 보내자.
잘못된 예시를 몇 개 들고 와 보겠습니다.
이 값이 e로 수렴한다는 것은 자명합니다. 그런데 밑에 있는 x를 먼저 0으로 보내고 지수를 0으로 보낸다면 어떻게 될까요?
밑의 x를 먼저 0으로 보내면 밑은 1이 될 것입니다. 거기다 1/0=무한대 제곱을 해 봤자 1이겠죠.
또 밑변의 길이가 1인 이등변삼각형의 높이를 계산한다고 해 봅시다.
높이를 n이라 두면 빗변의 길이는 루트(n^2+1)이겠죠. 빗변과 밑변 사이의 각을 세타라 하면 코사인법칙에 의해 다음 식이 성립합니다.
여기서 세타를 0으로 수렴시키면 어떻게 될까요?
단순히 세타만 0으로 수렴시키면 3/4 = 0이라는 이상한 식이 되어버립니다. 여기서 문제는 n이 세타에, 혹은 세타가 n에 종속된 변수라는 거죠.
n과 세타는 위의 관계식으로 묶여 있습니다. 따라서 세타가 0으로 가면 자연스럽게 n도 0으로 가게 되는 거죠.
이를 무시하고 그냥 한 변수만 수렴시켜 버리면 위와 같은 오류가 발생하게 됩니다.
2. 우리가 알고 있는 극한값을 무지성으로 대입하지 말자.
이건 위와 연결되는 내용입니다.
이것은 너무도 유명해서 다들 외우고 쓸 겁니다. 그리고 우리는 테일러를 좋든 싫든 조금은 맛보고 문제를 풀어봤죠.
그래서 위의 식이 포함된 식에서 우리는 종종
를 별 생각 없이 대입하게 됩니다.
그런데 이게 대부분의 경우 옳지만 항상 옳지는 않죠. 예를 들자면 아까 제가 답해준 글에서의 문제가 있겠네요.
여기서 tan x를 x로 단순 치환하면 위아래를 x로 나눠서 (1-1)/x^2로 바꿀 수 있겠네요. 그런데 이렇게 풀면 분자 0, 분모 0인데 더 이상 어떻게 바꿀 수도 없습니다. 잘못된 풀이이죠.
저 식은 사실 정규 교육과정 내에서 어떻게 풀긴 상당히 까다롭습니다. 0/0꼴이므로 로피탈을 반복 적용해서 풀던가, 아니면 테일러 급수의 3차항까지 근사해서 1/3이라는 답이 나옵니다.
질문하신 분은
까지 변형한 뒤 위아래를 x로 약분했죠. 여기서 문제가 생깁니다.
2tan x/2는 단순히 근사하면 x가 되지만 이걸 x로 취급해서 분자를 x로 묶어도 된다는 것은 아닙니다. 이건 위에서 이야기했던 특정 항만 먼저 수렴시키면 안된다는 것에 어긋나는 거죠.
이 식을 로피탈, 테일러 급수 없이 푸는 방법은 다음과 같습니다. 이거 말고도 다른 풀이가 있을 수 있지만 전 모르겠네요...
상당히 접근법이 어렵습니다... 네.
그래서 이 문제는 테일러 급수 3차근사식을 통한 접근을 추천드립니다. 로피탈도 사실 3번이나 써야 해서 상당히 더럽거든요.
여기까지 생각나는 대로 끄적여봤네요.
사실 저는 반쯤 무지성으로 테일러 급수를 대입해서 푸는 편입니다. 분모 분자 차수 비교해서 거기에 맞는 수준까지 대입하는 방식으로요. 물론 테일러 급수 이용하는게 더 복잡한 경우도 많고 해서 일반적인 풀이 기법도 연습하지많요.
조금 길어졌네요. 부족한 글 봐주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내신반영에서 유의미하게 손해보지 않을 정도로만 내신 챙기고 그냥 정시 위주로 하세요...
-
어느 정도의 신뢰성을 가진 자료인지는 잘 모르겠으나 참고만 하시길... 1....
-
쌍사vs쌍윤vs생윤사문 18
사탐런하면 뭐로 해야함. 공부시간 좀 줄이고 싶음 물지를 버리며...
-
ㅅㅍㅅㅍ 슾파쏘닉
-
깜짝 인증 4
ㄹㄴ이 최고인듯요 ㅎㅎㅎㅎ
-
아주대 점수 905 정도인데 공대는 힘들까요
-
다들 많니 써요?? 저 한 번?밖에 안 받아본 것 같은데 옯찐따라그런가
-
님들 한양대 에리카가도 한양대 행사나 이벤트 참가 되요? 21
에리카생들도 한양대에서 하는 이벤트나 행사같은거 참여가능한가요? 그리고 한양대...
-
입결에 비해선 많이 가는편인가요
-
민주당이랑 의협에서 많은게 오가는것 같음…. 어떡하냐
-
오늘 민증 발급받으러 갔는데 학생증 놓고와서 다시 집으로 터덜터덜 걸어감 사회생활 가능하냐 이거
-
어그로 ㅈㅅ 합니다 경희 높공 다니고 있는데요 저 원서 쓸 때는 이대 메디컬 제외...
-
나도 고1 고2들이 조금 미끄러졌다고 정시선언 바로 하는 거는 별로라고 생각하지만...
-
메가는 책이 너무비싸서 컽! 김범준 들어봐야징
-
맞팔9 10
드루와
-
뱃지 왤케 안줘 0
빨리 내놔
-
자야겠다 0
밤낮 ㅈ댐 ㄹㅇ
-
친구랑 내기 함
-
프사가 여돌인 뉴비는 17
귀엽다.. 옯티콘까지 귀여운거 쓰면 너무 ㄱㅇㅇ ♡
-
이렇게 안 까 먹음? 이게 왜 제주특이지. 걍 다들 이러는 거 아님?
-
흠
-
사탐잘들아 골라주라 16
쌍윤 vs 쌍사 vs 생윤+사문 만점 쉬운게 뭐임
-
쪽지 보내셈뇨 3
-
제발 변표를 주세요....
-
인강 수강 질문 2
인강 들을 때 현강 버전이 여러개 쭉 올라오잖아요. 근데 고민인게, 인강 들을때...
-
연 vs 고 0
연대식 697후반 고대식(변표발표전) 658중반 고대식 발표가 나야겠지만 지금...
-
오늘할거 29
경제수특하기 공수풀어보기 주식하기
-
경남사람이면 어디가 나음 부산경남지역 인식 원탑인 부산 vs 삼룡의+증원거의x인 인제
-
둘다 수시로 합격한 상황이고요..공부를 진짜 너무 안해서 넣은 두곳 합격했네요 둘중...
-
끄이애아아ㅏ아아가각
-
중앙대학교 변표는 도대체 언제 나오는지
-
국어 박석준 수학 손우혁 양승진 영어 문호상 이분들 ㄱㅊ나요
-
둘다 만표 160대 불수학 누가 더 멋짐?!
-
고대생 컴온 7
안암 맛집 추천좀요
-
복권 해보고 싶어요…! 열번 했는데 다 꽝…
-
기하만 정병호T 풀커리 탈거고 레일비기너스 + 쎈 한달컷하면 좀 늦을까요? 아니면...
-
백분위 100~89까지 전원 동점
-
머리 속이 뿌옇다 아무리 공부가 ㅈ같아도 최소한 공부할만한 기준이 있는데 그 기준도...
-
이제 임용고시 준비해야하는 교대생입니다. 올해 무휴학으로 학과 공부 병행하면서...
-
내일 낮 12시 1
토익성적표 개봉박두
-
편가르기 아닙니다 집 충청도인데 정시 어디쓸지 고민중임
-
극소수의 분들이 저를 뻘글러로 알아서 속상하네요
-
에 통합불변일까?
-
알가싫 0
-
수능 국어는 단순히 문제를 많이 풀어본다고 해서 점수가 오르지 않습니다. 진정한...
-
고대 3차 추합 0
학우 생공 3차 추합하신 분 계시나요? 예비 몇번이었을지 알고 싶어요..
-
이렇게 질질 끄는거보면
-
본인 수시로는 부산대 갈까말까한 성적인데 정시로 고려대갔습니다 개꿀통 기회의땅인...
-
지근 수 12 미적까지 수분감 + 한완기하고 있는데 뭔가 시간낭비라는 생각이...
굿굿
이해가 잘 안되는데요, 왜 저 4L에서 2x는 x로 바뀌고 바로 밑에서 3L로 바뀌고 x가 tanx로 바뀌는건가요?
아 오타냈네요... 지적 감사합니다! 수정하겠습니다!
3L은 4L에서 왼쪽 L을 뺀 거에요
평균값 정리로 마지막거 풀수 있어요