[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
게시글 주소: https://ys.orbi.kr/00065891419
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
번 먹고싶다 2
쫀득쫀득한 초코번이나 치즈번 헤헤
-
어떻게 마지막화도 아닌데 리타이어 시키냐고 진격의 거인도 안할짓을
-
제곧내.......뭐가좋음??
-
22번에 63을 썼다는 것 외에 대부분을 잊는 중이네요
-
3개년 70퍼 컷보다 환산점수 높은데 낙지 4,5칸 나옴... 확실히 짜긴 한 듯
-
선배들이 전부 의사 좆됐다 큰일났다 치대가 낫다 하루종일 얘기해대면 줏대 없는...
-
좀 신박하면서 귀여운거 추천받아요 봇치나 뭐 유명하지 않은.. 라프텔 직원...
-
얼마나 영향받음? 정시에서 내가 받은건 아님
-
쉬운직업? 거지 백수아니면 없다 모든 직업은 자기나름의 고충이 있다 정치인만해도...
-
그냥 날먹하고싶다
-
님들 그거 앎? 0
롯데리아 지파이 하바네로 재출시함
-
사정이 어려운 것 같아서 한두 번 늦게받았더니 과외비 76만원 들고...
-
경희대크라운관에서ㅎㅎ 음악은너무좋아요
-
우린 떨어질 것을 알면서도 더 높은 곳으로만 날았지<-이거 너무 좋아보이지 않나요?
-
올해 1학기때 저렇게하면서 힐링시간 개념으로 국어 공부했는데, 애초에 저건 공부도...
-
아도 내한 기념 3
노래듣기
-
히히
-
단순히 분탕치는 게 아니라 저게 현실인데? 나 사람 살리는 의사 되겠다, 나 소아과...
-
내가 공대나 대학원생까지 끌어들여서 “의대생만 불행해 빼액” 한 적은 없는데,...
-
가능성은 작다지만
-
그냥 끝까지 다 볼껄... 줸장
-
자취하기가 진짜 ㅈ같은 저주받은 위치임ㅋㅋㅋㅋㅋ 옆동네 아주대는 광교에 있어서 좀...
-
입시판을 뜨라는 계시
-
92 92 1 96 99 이렇게 나오면 어디즈음 간다고 보시나요
-
유대종 쌤 숏츠 다 봤는데 재밌어보였음.
-
이제 올해 1/10 남았어요. 36일 2시간 뒤에 새해...
-
고정외를 내놓아라 추추추추추합이라도...
-
옵치할래 5
?
-
무한 엔수 박으시나요?
-
늦게 개강하시네ㅠ
-
6월 영어 원점수 85 9월 영어 원점수 85 수능 영어 원점수 85(듣기 -3)...
-
2026수능을 대비하며 한완수를 하려고 마음먹었습니다 수1 수2 파트 1 2를 꼭...
-
본능적으로 강자에게 복종하는거지 드루이드전형으로 건수의 보내줘
-
뱃지 얻는법 좀 0
대학 빼고 다른 뱃지는 어케 얻음?
-
엘리베이터 타다가 틈에 빠질뻔;
-
맞팔하실분 3
아님 이미 팔로우중인데 내가 팔로우를 안했다 하는 분들도 ㄱㄱ
-
이렇게 다녀올까 8
-
들을려고 하는데 어렵나요?
-
ㄹㅇ 제가 그랬거든요 수능 날 이렇게 뒤통수를 쳐맞을 줄은... 단어 좀 꾸준히 외울 걸
-
귀엽네 ㅋㅋ 14
확 그냥 마 잡아무뿔라 마!
-
공감도 지능이다 2
이 말이 요즘 많이 와닿는다
-
국어만 고정 1이어도 삼수까지는 머리 박아도 된다고 생각함 그만큼 다른 과목에 비해...
-
옆사람도 계속 손 부채질하고 옷 잡고 펄럭거리고 있음
-
혹시 모르니까 원광대랑 전북대는 다시 팔 걸어놓음 내일 면접이네 하
-
면접 전날에 서울 올라가서 면접학원 들르려고요
-
이제 슬슬 할 때가 되었죠 잡담 태그 잘 다는 착한 오르비언이 좋습니다 저도 잡담...
-
썸네일 도긩쌤 뒤에 불꽃 있으면 그 편은 꿀잼 예약임
-
제가 다른 과목은 인강을 들었어도 수학은 딱히 인강을 들어본 적이 없고 동네...
-
ㄱㄱ
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!