작수 22번 출제의도는 그래프 풀이 (오피셜)
게시글 주소: https://ys.orbi.kr/00064608213
19 수능 출제의도.pdf
20 수능 출제의도.pdf
21 수능 출제의도.pdf
22 수능 출제의도.pdf
23 수능 출제의도.pdf
평가원 공식 홈페이지를 돌아다니다가
https://www.suneung.re.kr/main.do?s=suneung
수능 교육과정 근거 (이하 출제의도) 를 공식적으로 밝히고 있었다는 것을 이제 발견했네요!!
이 문제, 직관이 좋지 않거나 저처럼 머리가 잘 굴러가지 않는 분들을 위해
이렇게 직접 g(x) 식을 작성해 (나) 조건 적용하고 (다) 조건 마저 써서 답 내는 풀이를 권해드리곤 했었는데
평가원에서 공식적으로 '그래프'와 '평균값 정리'라는 워딩을 박아버려서... 여기에 초점을 둔 풀이를 우선적으로 강조하는 것이 적절하겠다는 생각이 들었습니다.
물론 '근거'일 뿐 다른 풀이를 제한하거나 지양하지 않기 때문에 (공식 해설이 없는 점 등에 근거) 다양한 풀이를 익혀두는 것이 좋겠다만
2019학년도 이후의 수능 시험지들은 평가원 공식 출제의도에 맞추어 공부하는 것이 학습에 도움이 될 수 있겠습니다!
이전 자료들은 없는 것인지 내린 것인지 못 찾겠습니다, 그럼 연휴 마지막 날 다들 파이팅하시고 내일부터도 다시 파이팅입니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대학 선택 2
고민되네요ㅠㅠ
-
저점매수들어간다
-
ㅇㅎㅇ 님의 성원으로 좋아요 5개 돌파해서 글 올린지 20분 만에 다시 쓰러 옴 그...
-
소신발언 21
나 배고픔 저메추 좀
-
정치 소신발언 2
정치계에서 가장 청렴해야하는 거는 사법부라고 생각해요 인간적으로도 청렴하고 뇌물 안...
-
안녕하세요, 수능 국어를 가르치는 적완입니다. 오늘은 시간 단축에 대한 이야기를...
-
바로 허수처리
-
ㅌㅈㅇㄹ가 특정완료야? 29
헐 개무섭네 소름돋아
-
순서 상관없이 임의로 라이브 배정할라나
-
추합 빙빙 돌려나 그래도 이게 맞지 않나? 그냥 원서 일정 땡기고 발표 일찍 때리면
-
의대 증원이 수의대 정시 입결에는 어느정도의 영향을 미치나요? 정시는 영향 안받고...
-
연락좀 주세요
-
내용이랑 전개가 왜이렇게 어질어질함??!? ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
궁금하뇨
-
충남대 일어or중어 충북대 중어 외대글캠 자율전공 or 융합인재
-
잔액이부족합니다 잔 잔 잔액 잔 잔액이부족합니다 ㅇㅈㄹ해서 너무쪽팧림
-
옯서운 사실 6
보닌은 올수 경제 3을 맞고 sky의 꿈이 좌절되기 직전이지만 선택과목을 바꾸지...
-
롤대남 야구 딥하게 팜 해축봄 정치 나름 관심있음 공부안함 ㅋㅋㅋㅋ
-
진학사 89칸 6
진학사에 8~9칸뜨는건 무조건 붙는거됴..? 굳이 배치표로 안봐도
-
ㄹㅇ?
-
고3 국어 커리 3
고2 10모 백분위 99.4고 2025 강기분 독서 수강했는데 잘 맞는거 같아서...
-
학종 추천형 예비 몇번까지 빠질까요 30명 뽑습니다
-
시발점 vs 프로메테우스 기본편 고민중이긴한데..
-
시대 강대 강하 고민중인데 다녀보신 분들 장단점 알려주세요 ㅠㅠ
-
과탐선택과목 0
과탐 선택과목 뭐하는게 좋을까요? 현역 화1지1 했다가 망했습니다. 반수할때 화1을...
-
강기원t 들으려고 하는데 n축 알아두는 정도는 하는게 좋을까요??
-
대 꼴 데 ㅋㅋ
-
가나다군에 한장씩 심지어 연고 전부 가군에 몰빵 이런식이면 원ㅅㅓ 어떻게쓰라는거임...
-
2단원 진도나가면 1단원 내용,감 휘발되고 수2파면 수1 감,내용 휘발 되고 뭐...
-
그 학과에서 1등으로 붙으면 장학금주나요..!???보통 모든 학교 모든학과말이ㅔ요
-
그래도 다행이네 0
과정은 험난했으나 어쨌든 정상화됐잖슴
-
어서오세요
-
중경외 쓰고싶은 과는 5~6칸인데 서성한은 낮과도 다 두칸이에여ㅠㅠㅠㅠㅠㅠ 원서 쓰기 싫다….
-
정수환 선생님 0
강대에서 윤리 가르치시는 정수환 선생님 연락처 갖고계신 분 있을까요?? 예전...
-
대중앙
-
예비 1번은 누가 할래
-
김현우 금요일 대기 130~ (토요일꺼 60번대인데 시간안맞아서 뺐어요) 강기원...
-
의료계에게 궁금한점 26
모집정지든 의평원불인증이든 왜 이게 되기를 바라는건가요?
-
다음대선 23
무소속 찰스형 국힘 한동훈 민주당 이재명 준표형은요? -> 그형은 19대때...
-
이렇게 되면 의대 24,25학번은 어떻게 되는건가요? 3
1학기부터 수업 안들어서 유급될 24학번은 어떡하며 이미 받은 25학번은 어떻게...
-
지원하고자하는 학과 국수영탐 평균 백분위가 184인데 저는 176나오는데...
-
중대 입결 오르나요?? 10
-
근데 제 생각엔 2
대통령 그 자체가 가진 힘이 있긴 하겠지만은 그 힘보단 결국 시대가 대통령을 만드는...
-
입학걸고 군대갔다왔더니 내년에 26살 인생 조땐거 맞나요? + 태그에 약대랑...
-
강릉원주대 치대랑 중앙대 약대랑 둘 다 붙으면 어디 가시나요
-
ㄱㄴㄷ도? 삼도극도? 무등비도형도? 개급함
-
컷 엄청 높은 것 같은데 반영비 때문인가? 나군이라 그런가? 내 성적이 5칸이라니..
-
서울대 강등 중앙대 승격
-
아웃백 시켜먹으면서 야무지게 탄핵영상 봐야지 석열이는 이순간에도 술쳐먹겠지?
페이지가 없다는데요..? ㅜㅜ
https://www.suneung.re.kr/main.do?s=suneung
들어가셔서 알림마당 > 공지사항 > 검색어에 '근거' 입력하시면 확인하실 수 있습니다! url 자체를 클릭하여 들어가는 것은 인위적으로 막아둔 것인지 아님 오류인 듯하네요
이러면, 그래프 풀이가 엄밀하지 않다던 몇몇 강사분들은...
정병훈
좋아요 노무 많네
병훈쌤 싫어하는거 아닙니다 ㅋㅋ
22번 수식풀이도 열심히 봤어요
그러한 말씀을 하셨던 강사 님들께서는 어떤 풀이를 지향하셨는지도 궁금하네요!
이제 평가원 자료 출제진이 쓰는거 아니라 의미없다도르 시전할예정 ㅋㅋ
전부 꽁꽁 숨기는줄 알았는데 교육과정 이수기준에 대한 부분만 맞춰서 알려주긴 하는군요 ㅋㅋㅋㅋㅋ..
저도 문항만 출제하고 해설이나 출제 방향 등은 따로 공개하지 않는 것으로... 가끔 가다가 이전 기출 문항 갖고 수능 소개 자료에 소개할 때 조금씩 드러내는 것 외에는 이렇다 할 것이 없다고 알고 있었는데 저렇게 명시된 공식 자료를 확인하니 새롭고 좋네요! 참고하여 문항들 다시 분석해봐야겠습니다
첨 알았네요
저도 오늘 알았습니다! 참고하기 좋다고 생각해요
주어진 문항이 어떻게 만들어졌는지, 왜 만들어졌는지를 이해하는 것이 문항을 어떻게 해결해야하는지 깨닫는 데에 큰 도움이 된다고 생각하고 있습니다. 그래서 수험생일수록 문제의 의도를 파악함과 동시에 다양한 풀이를 지향하는 태도를 함께 지닐 필요가 있다고 생각합니다.
물론 현장에서는 어떻게 해서든 답만 맞추면 그만이긴 합니다 ㅋㅋㅋㅋㅋ
이해못한 통통이들은 확추...
그래프, 평균값 정리 적용하는 풀이는 유튜브에 시각적으로 이해하기 편한 영상들이 많습니다! 수식 풀이는 (다) 조건에 f(0)=-3 이용하여 f(x)=x^3+ax^2+bx-3 (a, b는 실수) 정도로 설정하고 (가) 조건을 [f(x)-f(1)]/(x-1)=f'( g(x) )로 정리하여 다 대입해보시면 됩니다.
(혹시나 글 이해 못하신 학생 분들을 위해 댓글 빌려 남깁니다)
어허 호형훈제를 음해하려는 평가원의 계략이다
정병훈T 해설 제가 사랑합니다... 1711가30이나 221114 수식 풀이 보고 사랑에 빠져버렸습니다
그래프 풀이랑 식풀이랑 걸리는 시간이 다르긴 하더라고요
그래프 풀이 지향이 맞다고 생각합니다!! 다만 현장에서 그래프 그려 상황을 파악하기 어려운... 저와 같은 수험생 분들께는 수식 풀이도 권해드리고 있습니다. 1711나30, 221112, 2406미28 등을 수식 풀이로 밀어버리는 훈련으로 다루어두면
231122도 수식 풀이로 밀 때 현장에서 더 빠르게 풀렸을 것이라고도 생각합니다
오 이거 참고하기 좋다!
그쵸! 22, 23 수능 정도라도 참고하여 학습해두면 24 수능 대비에 도움 될 것이라고 생각하고 있습니다
문제결과물이 어찌되었든간에 출제의도는 그래프해석이었다~..
이거지 ㅋㅋㅋㅋ
평가원 학습방법 안내에 가능한 선에서 최대한 해설 하더라구요
출제 근거에 함수의 그래프의 개형을 그릴 수 있다, 함수에대한 평균값 정리를 이해한다
(가),(나) 조건에서 f(x)와 g(x)의 관계를 파악할 수 있고 (다)조건에서 조건을 만족하는 함수 f(x)를 구할 수 있다라고 해설
평가원 공식 홈페이지 자료마당>수험자료에 나와있는 '2024학년도 대학수학능력시험 학습 방법 안내' 76페이지 부분 말씀해주신 것이죠? 함께 살펴보면 학습에 도움 될 것이라 생각 들더라구요
그리고 개인적으로 f(x)의 정체가 y= (x-2)³+5라는 매우 간단한 함수라는 점도 의도적으로 이렇게 한걸까? 생각하는데
접선에 대한 차이함수로만 계산하는 것과 함수 f(x)를 구하는데서 계산 난이도의 차이가 극명하게 생기는 듯하네요
파일 속 출제 의도에 맞는 정석 풀이는 f(x)-(px+q)=(x-1)(x-5/2)^2로 두고 (가) 조건으로부터 f'(1)=f'(g(1)) 얻어 g(1)=3 확인하고 (다) 조건에서 f(0)=-3과 f(3)=6 통해 p, q값 결정하는 것이 아닌가 생각하고 있습니다!
예시로 그래프 그려 상황 파악할 때 주로 f가 서로 다른 두 극값을 지니는 상황을 생각했을텐데 실제 결과는 어떤 상수함수에 삼중근 가지며 접하는 형태라 신기했어요
정병호는 저런거 순진하게 정말 교수가 쓸거라고 생각하냐고 어차피 부하직원 잘 모르는 사람들이 여기 단원이 이거니까 이거 쓰는거라고 대충 단원명만 알려주는거라던데
정병호 선생님께서 그렇게 말씀해주셨었군요! 알려주셔서 감사드립니다. 그래도 '그래프'와 '평균값 정리'라는 워딩이 '합성방정식'이나 '합성함수' 해석 대신에 들어와있다는 점이 의미 있다고 저는 느꼈습니다
평가원 교수님들이 쓸 가능성이 높은게 오류시비 생길때 대비해서 분명 저런 자료들 작성하는 것으로 알고 있습니다. 정리는 실무자가 한다고 해도 말이죠...
미궁의 문 사건 이후에 출제 하신 분이 직접 가서 출제 의도와 근거 같은것들 정리해서 올린게 시초로 아는데
그건 정병호 qna가서 달아보시는게
???: 진짜로 교수가 쓴거면 그 교수가 실력이 없는것
강사하실기 아니고 교수 하셨어야 됐네요 ㅋㅋㅋㅋ
2019학년도부터 공개하기 시작했어요
알려주셔서 감사드립니다, 어떤 계기가 있었다면 무엇이었을지 궁금하네요
https://www.topdaily.kr/articles/22479
감사드립니다!! 지진 연기가 18수능이었군요... 교육과정 외 출제 논란을 줄이기 위한 명시가 목적이었군요