24학년도 9평 수학 손해설지 및 간단한 총평
게시글 주소: https://ys.orbi.kr/00064305235
2024 9월 평가원 모의고사 수학 by 익성T.pdf
시험 보느라 대단히 고생 많았습니다.
파급 수학 팀의 익성T에요 :)
오류 및 오타제보, 질문, 제안 등등 언제든 환영입니다.
간단한 총평을 남기자면 다음과 같습니다.
9번: 교육과정 해설서와 교과서에서는, '삼각함수의 그래프를 그릴 수 있다.'라고 명시하고 있고,
sin함수와 cos함수의 그래프의 관계를 말하고 있습니다.
10번: 수능 기출문제의 재활용입니다.
제가 강의에서 자주 사용하는 말인 '초벌 그래프'를 그린 후
계산으로 자신있게 밀고 나가야 합니다.
13번: 구간별 함수를 구성하는 두 함수식이 딱 봐도 유사해 보입니다. 직선대칭임을 활용하여 빠르게 그림으로 치고 나가셨어야 합니다.
14번: '추론'에 정당성을 부여할 수 있어야 합니다.
교과서에서의 지수함수와 로그함수의 그래프 주제는,
역함수 관계가 가장 중요하지만
'점근선'또한 힘주어 이야기하고 있습니다.
15번: '극한의 성질'문제풀이에서 '반복되는 작업'에 대한 캐치가 필요하고, 자신있게 치고 나가며 풀이해야 합니다. (실전은. 기세야.) 캐치하지 못 해도 상관 없으나, 시간은 제한되어 있습니다.
21번: sigma 조건을 어떻게 풀어헤쳤냐에 따라 계산량이 달라졌을 것입니다. ‘13'은 뒤의 확률과통계 문제에도 등장하네요.
확28: 발문을 정확히 독해하고, '기록'하면서 풀어야 합니다.
확률이 완전제곱으로 표현되는 경우를 잘 이해해보세요.
확29: 손풀이에는 모든 경우를 망라하여 놓았으나,
확률을 묶어 경우의 수를 셈하는 것으로 풀이했어야 합니다.
확30: '반복'되는 작업입니다. 케이스 분류는 맞는데, 케이스 분류가 아닙니다.
미28: 6월 모의평가에 비해서는 현실적인 난이도입니다.
'정적분으로 정의된 함수'에서 무엇을 배웠는지, 정직하게 풀이하면 됩니다. 다른 요행은 필요하지 않아용.
미30: '미적분'과목의 '미분법'은 무엇이든 다 할 수 있습니다.
변수를 두 개 이상 설정해도 괜찮습니다. 출제진을 믿으세요.
기29: 기출문제를 살짝 낯설게 틀어 상황은 그대로 출제하였습니다. 타원의 정의를 활용하여 선분의 길이의 차의 최솟값 조건을 선분의 길이의 합으로 바꾸는 것은 이제는 개념의 영역인 듯해요.
기30: 완성도가 높은 문항입니다. '벡터의 상등'을 정확하게 알고 있었어야 했고, 미지수 설정에 대한 거부감이 없었어야 합니다.
비주얼은 쉬워보이는데 막히는 문항들이 꽤 있을법한 시험지였습니다. 평가원이 뒷통수 때리는게 하루 이틀이 아니라 9평 수학이 쉽게 느껴졌다고 수학을 내려놓친 않으셨으면 합니다.
9평 이후 EBS 수특, 수완 선별좌표 최대한 엑기스만 추려서 올릴 계획입니다.
알다시피 최소한의 문제로 최대 효율을 낼 수 있다는 것은
당장 아래 글 링크를 보시면 아실겁니다 ㅎㅎ
20 수능 나형 28번 적중:
20 수능 FINAL EBS 나형 적중 자료(28문항):
좋아요, 팔로우 해주시면 놓치시지 않을 듯 합니다.
모두들 수고 많으셨습니다 ㅎㅎ
감사합니다.
최신 기출 중 특정 단원 특정 난이도만 무료로 풀고 싶다면?
모킹버드 n제 코너 소개 링크:
지인선 님이 참여한 싸맛과 실모를 풀고 싶다면?
해당 사이트는 아직까지 데스크탑에 최적화 되어있습니다.
데스크탑이나 태블릿 이용을 권장드립니다.
'가입만' 해도 N제 코너는 평생 무료이며
자작 실모 1회 추출도 가능합니다.
(그림을 클릭해도 사이트로 연결됩니다.)
(오르비의 허락을 맡고 올리는 게시글입니다.)
익성T 소개
모킹버드 소개글: https://orbi.kr/00063268579/
모킹버드 무료 모의고사: https://orbi.kr/00063739018/
지인선 N제 2024: https://orbi.kr/00062075350/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
염병 번호 계속밀리네
-
맨날 쳐 자서 모름
-
강의 보니까 소설이나 시 강의에서 특정 작품은 한문장 자문장 읽으시면서...
-
악몽꿈 1
고대식 갑자기 700점대 표본들 우수수 들어와서 저 아래로 순위 밀려있는 꿈 꿨음
-
먼저 연락달라 하셨잖아요,,,,ㅠㅠ
-
입시 일 하면서 사람들을 많이 만나다보니 여럿 사람을 만나는데요 저는 처음에 점공...
-
그날 공부 시작하기 전에 어제 했던거 다 보는 식으로 해야될지 잘 이해안되는 것만...
-
3모 전까지 시발점으로 개념 탄탄히 끝내고 그 후에 뉴분감 같이 들으려구요 5월...
-
어제 인증메타는 4
자괴감과 슬픔만 안겨주었음 다 기만자들이더라 나같은 '진짜'들은 인증을 못 했다...
-
글 리젠 느리네
-
대학다니면서 조교도 하구 과외도 하구싶네용
-
돈 없어서 눈물흘리며 말골로 갈아탔다....
-
수도권 대학들 인서울이링 비교하면 어디까지 비빌수 있음?
-
ㄹㅇ 애매한 성적 아닌가
-
현혈하는 이유 9
편의점 상품권으로 술사기 피같은 술이라는 말은 맞는 말이에요
-
25수능때 사과탐 선택한 사람도 시대재종에 과탐2개반 들어갈 수 있나요? +백분위...
-
레전드 시기 0
수능 공부 1년 더 하고 싶음 ㅋㅋ 유튜브에 현우진 강민철 ㅈㄴ 뜨는데 개마렵네
-
헌혈해두면 3
나중에 늙어서 기운없을때 보양식 개념으로 수햘받기 ㄱㄴ??
-
도서관 가서 실모 한 5개만 풀고올까
-
진학사 칸수는 비슷했는데 어디가 나을까요
-
강기본 듣고있고 끝나면 강기분 들으려고 하는데 언제 들으면 될까요?
-
한 번 사는 인생 이 정도 각오도 안 했으면 애초에 시작도 안했다
-
사기업은 이미 못가는거 아닌가 공기업은 가능함?
-
미필 5수 슈웃 12
Sky도 못가며
-
확실히 법대가 강했던 설대, 고대, 성대가 인상 깊네요 ㄷㄷ
-
사탐런 공대 4
지금 건대고 그 위로 무조건 공대가고싶은데 (대깨공) 군수 + 과탐 원래 못함 으로...
-
5수생 부럽다 8
내가 5수만 됐어도 나이걱정 안했을듯
-
'될때까지 n수'
-
정시는 진짜 ㄹㅈㄷ인게 17
지금상태에서 한문제를 더맞추면 설대낮과 써봄직한데 만약 한문제를 더 틀렸다면...
-
가군 붙었겠네 아하하하하하하하하하하하하하하하하하하
-
나가죽을게
-
난한마리의미친개 리트풀다미쳐서개가되어버렸어
-
입갤 5
-
1월 15일에 중앙대 최초합격자 발표합니다 쓰신 분들 까먹지 마세요
-
외대 소수어과 점공 표본수가 아직도 19명인데 원래 이렇게 적나요? 너무 적어서...
-
일상 생활은 안하나
-
보통 힉교선생이 하라는대로 하는게 대다수인 친구들은 허수거나 개고수이거나.. 보통...
-
이번 편은 제가 이번 학기에 '인공지능 윤리'라는 수업에 발표한 내용을 바탕으로...
-
다소의역) 이전탑들은 자원을 투자해야 능력치를 낸다 3
??? : 자원이 투자되지 않은 상황에서도 최대한의 포텐셜..어쩌고..
-
초반 노래 분위기랑 후반분위기가 ㄹㅇ개달라서.. 개좋음
-
수능 그 자체를 목적으로 생각하면 왠지모르게 기대되고 즐거움
-
점공 좃망 ㅋㅋ 2
12명 중 12등 대성패스 사러감 ㅅㅂ
-
오늘은 할 일이 0
너무 많네요...ㅠㅠ 헤르미온느가 되.
-
지금 미적 강기원 공통 장재원 듣고 있는데 장재원쌤 과제 량이나 난도나 퀄리티는...
-
오늘 하루도 힘차게 살아보자고!
-
확통 쎈b 풀려는데 1. 첨풀땐 딴데다 옮겨풀고 2회독할때 전문항을 다시품? 2....
등급컷 ㅇㄷ?
등급컷은 메가나 대성이 잘 예측할 듯 해서 ㅎㅎ
미적분 28번 문항 오류있습니다. x<0 일때 넓이 하나당 1이 맞습니다.
아이고 오타 났네요. 감사합니다.
개인적으로 미분가능에 대한 언급도 포함해주시면 좋을것 같아요. 왜 a의 후보들이 n/4파이 꼴인지에 대해서요.
추후 배포되는 지면 해설지에는 잘 적어두겠습니다. 감사합니다!
n/4네요 ㅎㅎ 올리시느라 고생하십니다 ㅎㅎ
비주얼은 쉬워보이는데 딴딴한 실압근 같은 느낌이었어요 ㅎㅎ 수고 많으셨습니다.
13번 y=-b 대칭이 무슨뜻인가요?
예를 들어 f(x)를 y=a에 대칭시킨 식은 2a-f(x)입니다.
문제 상황에서는 y=-b에 대칭시켰다는게 바로 나오죠
(1/9+2/9)^2하는 이유를 모르겠어요. A에서 두개+B에서 두개+ A에서 한개 B에서 한개 해서 (1/9)^2+ (2/9)^2 + (1/9×2/9) 이렇게 나와서요
X_1=2, X_2=2 는 또 아래 2케이스가 있어요
(1) 처음에 3의 배수 나오고 두번째 3의 배수 아님
(2) 처음에 3의 배수 아니고 두번째 3의 배수임
3의 배수 나오고 A에서 뽑고 또 3의 배수 나와서 A에서 뽑고 3의배수 안나와서 B에서 뽑고 또 B에서 뽑는 방봅도 있지 않나요?
넵넵.
그래서 X_1=2 확률이 1/9+2/9 이고
X_2=2 확률이 1/9+2/9 이여서
저럴게 제곱식 써진거예요