미적분 증가 감소 질문이요
게시글 주소: https://ys.orbi.kr/0006276402
f'(x)>0 이면 증가, f'(x)<0이면 감소 잖아요
그리고 증가이면 f'(x)>=0 등호 들어가는거 잖아요
여기까지는 이해가 되는데 문제에서 함수 f(x)= -x3+12x+9가 증가하는 구간이 (a,b)이다
라는 문제랑
f(x)=-x3-3x+ax=4가 구간(1,2)에서 감소하도록 하는 실수 a의 값의 범위를 구하여라.
라는 문제랑 뭐가 다른지 모르겠어요
음 그니까 위에 두개 개념이 아래 두개 문제에 어떻게 적용되는지 모르겠어요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다들 그럼 뭐하는건지 쓰고나가셈
-
댓글 등의 반응은 현저히 줄어드는데 조회수는 개빨리 늘어남 ㅋㅋㅋㅋ 뭔가 있는 듯
-
중기:이거 불법입니다!
-
ㅇㅈ 2
중딩때임ㅇㅇ
-
오르비가재밌는데말야
-
요즘 오르비는 다들 일찍 자는 바른 어린이들이라 3시에 하면 또 재미 없음 ㅋㅋ
-
영어 2,3 등급 차이 많이 심한가요? 예비 고3인데 그냥 영어 2등급까지는 띄울...
-
연애하고 싶다
-
고2인데 올해 모의수능 봤을때 물리3(찍맞1개) 지구5(실수 많이 함..서바 풀면...
-
.......
-
고3 때 김동욱 일클 조금 들었었는데 그때는 조금 추상적으로 느껴졌거든요(방식은...
-
진짜 오랜만에 하는 ㅇㅈ인 듯 ㅋㅋ 차피 어릴 때라 신상 털릴 일은 없어서.. 오랜만에 ㅇㅈ해봄
-
언매 0틀 87점인데 3등급 뜨면 진짜 저는 이 세상에서 존재하지 않을지도...
-
방금 그 뭐야 올렷던 사진 여기 넣어서 찾았는데 안나왔어요 미방 안했는데...
-
경희대 될까요?
-
저는 공부하다 까먹어버렸어요 공부를 열심히 해서 그런건 아니고 기억력이 안좋아서 까먹음
-
모기야 제발 3
잘라는데 앵앵거려
-
내전휴ㅡ번호어
-
아나타모~하야쿠낫테네에에에에~
-
뭔가 요즘 그냥 10
내 무능함에 삶 자체의 동력을 잃은느낌
-
ㅇㅈ 2
그렇습니다
-
킁킁
-
뭐지 진짜
-
다 열심히 연계 공부했는데 저 셋중에 하나도 안 나온 게 너무함 이동하는시간...
-
ㅇㅈ 6
영정사진 ㅇㅈ
-
ㅇ 2
-
95인지 97인지 잘 모르겠음 37이랑 41 틀렸는데 41을 2랑 3이랑 고민하다가...
-
팔로우 쌀먹을 시전하려는 나쁜 인간들!
-
당연히 수학황은 아니지만 낮은 등급대이신 분들꼐는 제가 겪은 시행착오가 조금이라도...
-
후회 하고있어요 3
우리 다투던그으날
-
심찬우 강민철 김승리 … 고민됩니다ㅜ
-
ㅇㅈ 막차 10
펑
-
진짜 금시초문인데 또 완전 개소리같진 않아서 경험자분들 와서 알려주셈
-
바로.. 수능 샤프 모으기 내년엔 무슨 색일까?
-
아까 사진은 사실 작년이고 이게 올해에요 금방 지워야지 이거두
-
서울대 체대 1
수능끝나고 체대입시 준비하면 현실적으로 불가능한가요? 서울대체교과 넣고싶은데 입시...
-
여러분들은 무엇이 문제라 생각하십니까 512분의 조사동안 무엇이 들통난 걸까요
-
1명이 중복으로 다는 건 하나로 취급함 사회실험
-
모두 잘 살아라 5
난 잘 못살겠다 장례식은 지금 열음 굿다이노
-
ㅇㅈ 3
외접
-
난빌런 << 이새기는 걍 노력을 안함 ㅋㅋ
-
아일릿에 입덕해보는게 어떨까요?
-
성공 여부도 진짜 중요한데 그거 말고 실패 했을 때 손 털고 나가려면 최선을...
-
난 딱 두 번 그래 본 적 있음 딱히 그 사람한테 얘기하진 않았었는데... 흠
-
전에도 덕질 몇번 해봤긴 하지만 올 초에 어떤 가수에게 정신이 넘어가고 진짜...
-
인설의 목표 사반수 선택과목 추천좀요 국영 그럭저럭 하고 수학은 1컷에서 중반정도...
-
더코 왜필요함? 14
확인하는법 몰라서 가만히 있다가 오늘 알았음ㅋㅌㅋㅌ 7000정도라고 뜨는데 이거로 뭐함?
-
ㅇㅈ 32
바로지워야지 제가 아는 사람은 없겠죠? 여기?
-
쎈+뉴런 조합이 은근 좋은거같음 뉴런 자체 문제가 조금 부족한것도 있고 난이도...
-
과탐2개봤으면 4
강대 시대같은 곳에 인문전형으로 지원 안될까요? 25수능 과탐 두과목 봤고 둘 다...
증가와 증가상태의 정의가 조금씩 의미가 달라서 그래요
미분과 연관지어서 생각할 것이면은
딱 이렇게만 성립합니다.
증가의 정의가 a<b일때 f(a)<f(b)이고 이것을 미분과 연관지어서 새각하려면
증명:(a,b)안의 임의의 실수 x1,x2를 잡고 (x1<x2)
f'(x)>0일때 a<b 이면 f(a)<f(b)임을 증명
>>평균값 정의를 이용하여 f(x2)-f(x1)/x2-x1>0이므로 f(x2)f(x1)
이렇게 증명하는것이 미분단원에서의 함수의 증가감소와 미분과의 관계입니다.
증가과 감소는 그 지점에서의 좌우의 함숫값으로서 정의를 합니다.
증가상태나 감소상태는 그 지점과 좌우의 값을 비교함으로서 가능한데
x^3에서 0은 0이지만 좌우에서 쭉 커지므로 그때는 증가상태라고 할 수 있습니다.
쎈이나 일반 고등학교 시중문제집에서는 2개를 구분하듯이 섦령을 하고 있지만 교과서에서는 증가와 감소만을 다루고 그와 미분과의 관계만을 묻습니다. 증가 감소 자체가 목적이 아니라 증가감소와 미분과의 관계를 밝히는것이니까요
쎈 보고 질문하는거 맞아요 ㅠㅠㅜㅠ 그럼 교과서에 있는 증명하고 예제에 있는 내용만 알면 되는건가요? 예를 들어 문제에 어떤 함수가 (a,b)에서 증가 함수라고 하면
증가 이면 (a,b)에서 f'(x)>= 0이라고 하고 문제 풀면 되나요 ?
그냥 증가상태는 잊어버리시고 미분과 증가감소만 아시면되요
증가일때가 아니라 일반적으로 다항함수에서는 증가 감소에 등호가 들어가지 않나요? X^3이나 -X^3같은 경우가 있어서..
그리고 (a,b)에서 증가한다는 말은 삼차함수의 경우 a,b가 각각 극댓값,극솟값 중 하나라는 이야기일거고
(a,b)에서 증가하도록 구하라는 건 범위를 더 좁힐수도 있으니 1학년때 배웠던 근의 분리를 이용하라는 것이겠지요..