수특에서 배울거리를 정리해보자 5
게시글 주소: https://ys.orbi.kr/00054486964
지수함수와 로그함수는 점대칭이든 선대칭이든 대칭성이 생명입니다!
★★지수, 로그함수는 대칭성!!★★
밑이 같은 지수함수, 로그함수가 나오면 무조건 대칭성을 떠올려야합니다.
심지어 (ㄱㄴㄷ 문제에서) 밑이 다른 지수함수와 로그함수가 주어진 경우에도 보조선처럼 밑이 같은, 대칭성을 지닌 함수를 그려주어야 문제가 풀리는 경우가 있습니다.
f(x)=2^(x-1)+3, g(x)=-2^(1-x)+3을 보자마자 두 함수가 (1, 3)에 대해 점대칭임을 알 수 있어야 합니다.
일단 기본적인 지수함수 y=2^x, y=-2^(-x)가 원점에 대해 대칭인데, 이를 평행이동하였으므로 어느 점에 대해 대칭이겠구나 생각할 줄 알아야하고, 그 점이 (1, 3)임을 찾는 방법 세 가지 살펴볼게요.
① f(a+x)+g(a-x)=2b이면 두 함수는 (a, b)에 대해 대칭입니다.
이는 지수, 로그 함수가 아닌 일반적인 두 함수에 대해서 성립하는 성질입니다.
f(1+x)+g(1-x)=6이므로 두 지수함수가 (1, 3)에 대해 대칭입니다.
② y=2^x, y=-2^(-x)가 (0, 0)에 대해 대칭인데, 각각을 x축 방향 +1, y축 방향 +3 평행이동하므로 점대칭 기준점 (0, 0)도 같이 이동해서 (1, 3)에 대해 대칭이죠. 평행이동 전에 점대칭이 쉽게 보일 때 사용할 수 있는 성질입니다.
③ 지수함수 y=2^x, y=3^x가 공통으로 지나는 점 (0, 1)을 "정점"이라고 부를게요. 지수 부분이 0이 될 때의 점을 말합니다. 그러면 f(x)=2^(x-1)+3, g(x)=-2^(1-x)+3에 대하여 f(x)의 정점은 (1, 4), g(x)의 정점은 (1, 2)입니다. f, g가 점대칭임은 이미 알고 있으므로 두 정점 (1, 4), (1, 2)도 그 점에 대해서 대칭이겠죠. 따라서 정점의 중점인 (1, 3)에 대해 대칭임을 알 수 있습니다. 지수함수일 때 사용할 수 있는 방법입니다.
두 함수가 (1, 3)에 대해서 대칭이므로 점 A, B를 (1, 3)에 대하여 대칭한 점 A'=C, B'=D이라 하면 ABCD가 평행사변형이 됩니다.(C, D가 다른 곳에 있을 때는 평행사변형이 되지 않는데 이는 마지막에 다룰게요)
점 A, B, C, D의 x 좌표를 a, b, c, d라 하면 A, C의 중점이 O(1, 3), B, D의 중점이 O(1, 3)이므로
a+c=2, b+d=2입니다.
a+b+c+d=4이고
(나)에 의해 a+b+d=5, a+b+c=2입니다.
연립하면 a=3, b=0, c=-1, d=2임을 알 수 있습니다.
대입하면 A(3, 7), B(0, 7/2)입니다.
점 B, D의 중점은 대칭 기준점인 O(1, 3)이 됩니다.
그리고 AO의 기울기는 2, BO의 기울기는 -1/2이므로 수직입니다.
그러므로 삼각형 AOB가 직각삼각형이라는 것이고, 구하는 원은 AOB의 외접원입니다.
직각삼각형의 외심을 구하는 것이므로 빗변인 AB의 중점 (3/2, 21/4)입니다.
a=3/2, b=21/4 이므로 b/a=7/2
아까 평행사변형을 정할 때 A, B를 (1, 3)에 대칭한 것을 C, D라고 했잖아요.
대칭시킨 점을 A', B'라 할 때 C, D가 이와 다른 점일 때도 평행사변형이 될 수도 있지 않을까요?
결론은 안됩니다.
평행사변형이므로 CD는 AB와 길이가 같고 기울기가 같습니다.
그런데 A', B'은 점대칭한 것이므로 A'B'은 AB와 길이가 같고 기울기가 같습니다.
그렇다면 위 사진 가운데 그림에서 (빨간색) A'B'과 (파란색) CD의 길이가 같고 기울기가 같은 C, D를 잡을 수 있을까요? C, D가 A', B'보다 오른쪽으로 가면 기울기가 작아지고, 왼쪽으로 가면 기울기가 커지므로 불가능함을 알 수 있습니다.
그러니까 A, B가 정해졌을 때, 평행사변형이 되도록 하는 C, D는 유일한 것이고, 그 점이 A', B'인 것이죠.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수능 그 자체를 목적으로 생각하면 왠지모르게 기대되고 즐거움
-
점공 좃망 ㅋㅋ 0
12명 중 12등 대성패스 사러감 ㅅㅂ
-
오늘은 할 일이 0
너무 많네요...ㅠㅠ 헤르미온느가 되.
-
지금 미적 강기원 공통 장재원 듣고 있는데 장재원쌤 과제 량이나 난도나 퀄리티는...
-
가령 공스타면 공스타끼리 친구추천해주는 느낌인가
-
오늘 하루도 힘차게 살아보자고!
-
확통 쎈b 풀려는데 1. 첨풀땐 딴데다 옮겨풀고 2회독할때 전문항을 다시품? 2....
-
좋아요 구독 부탁드립니다.
-
토-일-월 3일동안 1/6수강 => 18일완강 가능 => 1월에 끝
-
점공인원이 줄더니 내가 2등 올랐어 정말뭘까
-
퇴근했을때도 그렇고 나중에 계좌에 돈 들어오고나면 일하길 잘했단 생각이들어요 열심히하고와야지
-
이런
-
들어올거면 내 뒤로 들어와 미친놈들아
-
배꼽이 없단 걸 의식하고 걱정하지 않으려고 용을 쓰는데 뜻대로 안되는 주인공처럼...
-
매운거먹고싶다 5
속이 근질근질하구먼
-
같은 팀원들 점수 깎인다고 걱정해주던데 ㄹㅇ 착한 도람쥐임....
-
"부처를 만나면 부처를 죽이고, 조사를 만나면 조사를 죽일 것이며, 아라한을 만나면...
-
오늘 안 상식 2
베르무트는 와인이라서 냉징보관을 해야한다
-
알바가기 귀찬아 2
ㄹㅇ그냥 퍼질러자고싶음
-
낼모레는 가네
-
얼버기 5
-
이제 자러가야지 1
좋은 밤 되세요
-
하지만 잇올을 간당
-
ㅇㅂㄱ 9
-
5~6등급인데 션티 들으려고합니다.
-
밖에나가서 공부할라믄 돈이드니까 돈을 최대한아끼려면 집에서 공부해야하는데 집에서는...
-
얼버기 5
갓생 1일차.
-
얼버그 0
얼버그는 얼버기와 레버기에 잡혀먹는다
-
얼버기 4
출근중입니다
-
내가 팔로우해줌 ㅇㅇ
-
오늘 일정 2
8:00 ~ 22:00 : 잇올 22:00 ~ 00:00 : 오르비 및 운동 이후 취침 씹갓생 ㄹㅇ
-
유빈 0
시냅스 수2 답지 올리라고!!!!
-
기차지나간당 4
부지런행
-
확통 미적 고민 10
국어랑 탐구(사탐런 예정)에 시간을 많이 써야되는 상황에서 확통 -4점(다 맞을...
-
전 게이가 아닙니다.
-
ㅈㅅㅎㄴㄷ 5
지금까지 광명상가의 가를 가천대로 알았어요
-
오늘 계획 4
미용실 다녀오기 오르비하기
-
내년에 서울가서 재회하기로
-
만약에 본인이 내년에 26학번으로 입학인데 현역이라는 가정하에 같은 26학번이...
-
전 결혼도 하고싶은데 여자는 특히 결혼할때 나이가 중요하니까 너무 불안하네요
-
나중에 결국 '에이 걍 안가고 말지' 이런마인드로 바뀌면서 의욕떨어지는데 목표를...
-
하..... 여자되고싶다
-
얼버기 2일차 0
-
딱히 진로를 정하진 못했는데 이번에 아주대 전자(자전),미랴모빌리티 두개 넣어서...
-
초딩때 무지성으로 헤헤 최형우 머시따 하면서 볼때는 몰랐는데 수능끝나고 제대로 파니까 개복잡함
-
밝은척하면서 은근슬쩍 까는거+비틱질 역겨워죽게슴 소신발언
-
얼버기 2
-
스카가야지
선생님 잘 봤습니딘. 이번건 어렵네요.
혹시 다음주에도 영상 올려주시나요?
주제랑 문항은 정해두었는데 영상과 칼럼 모두 만족시킬 형태를 고민중입니다. 그치만 높은 확률로 업로드 예정입니다. 봐주셔서 감사하고, 이번 내용이 어려울 수 있지만 정말 중요한 내용입니다 도움되시길 바라요!
수특 오늘 올리신거 되게 재밌게봐서 정주행중이에요! 기울기가 수직인건 그냥 직관으로 알아야 하는 부분인가요? 좀더 필연적으로 와닿는게 될지 모르겠네요..ㅠㅠ
정주행이라니 감사합니다 앞으로도 도움되는 글들 올릴게요. 이 문제에서랑 별개로 점 세개 나왔을때 직각삼각형이나 이등변삼각형 등 특별한 삼각형인지 확인을 해보는 습관 가지는게 좋아요. 저도 그렇게 발견했구요
고견 감사합니다ㅎㅎ 좋은 컨텐츠도 연재해주셔서 감사하구요! 팔로우했어요
이 문제 상당하군요... 21번에 나올법한 느낌이에요
지수함수 평행사변형/마름모 ->점대칭
지수함수 점대칭 정점으로파악
x좌표 정보를 줬으니, 대칭성을 이용한 x좌표에 집중
세 점을 지나는 원-> 뭔가 삼각형이 특수할 것
생활도 바쁘실텐데 이렇게 영상까지 찍어주시니... 감사합니다!
글마다 댓글 남겨주셔서 감사합니다 꾸준히 봐주시는 분 계신다는게 큰 힘이 되네요