수학미분가능관련질문이요
게시글 주소: https://ys.orbi.kr/0003837781
안녕하세요
공부하다가 혼란스러운게생겨서 질문드려요ㅠ
함수가 미분가능하다! 라고 하면 함수의 좌미분계수와 우미분계수가 같다인가요아니면 함수값도같다고 해야하나요?
좌미분계수와 우미분계수만같으면 미분가능하다고할수있나요?
미분가능하면 연속이라고 배웠는데... 먼가 계속헤깔려요ㅠ
답변주시면 감사하겠습니다ㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
댓 없는 얼버기는 처음이야…
-
https://cafe.naver.com/pnmath/3808705?tc=shared_link
-
잡담 태그 잘 달아요 팔로우 취소 안해요
-
뭐임
-
그리고 0
9월?이랑 10월초까진 모고만 풀고 강의 나중에 들었었는데 어쩐지 점심시간에 밥먹고...
-
아 큐브 진짜 1
안되는거 쳐 물어봐서 안된다고 얘기했더니 3-4점 주는거 진짜!!!!!!!!!!!!!!!!!!!
-
아이고 TMI) 0
의외로 널리 알려진 한국어라 구글에 aigoo 치면 잔뜩 나옴 더 TMI로 아...
-
문학입니당? 1
이런 시대별 특징 등등을 노트 정리 해야 하나요? 아직 고1이여서 지문을 접한...
-
얼?버기 0
밖이 어두컴컴해서...
-
생각이란걸안하고 서바시즌 중후반까지 1.8배속으로 강의 틀어놓고 서바풀고있었음...
-
얼버기 0
-
하..
-
3트만인데..... ㅋㅋ 검정료 더 안써서 다행
-
김승리t 강의에서 시간 주고 풀라고 할때 항상 딱 맞춰서 풀거나 부족해서 푸는...
-
https://orbi.kr/00071901928 제목이 결론
-
나우러.. 동글동글 꿀돼지얼굴어쩔거임
-
강기분 시작하려는데 이미 푼 문제나 혼자 분석한 지문도 많아서 꼭 다...
-
이따옴브리뉴
-
누구야 팔취안돼!!
-
이원준 강민철 0
강민철 풀커리 이원준 독서 시너지 좋나요?? 문학 강의를 누구 들을지 고민되네요…
-
오늘 문자 올라나
-
뱃지 4
제발 메일좀 읽고 달아주세요 7일에 보냈는데 아직도 읽지도 않고..
-
졸업앨범받음 1
내일졸업
-
인하공업전문대학이구나
-
편입이였네
-
遅く( ) じゅうじまでには かえってよ。 類は ( )を よぶと 言う。 * 類: 종류,...
-
어라??
-
중독되네 아이고..
-
누가 언팔했냐? 2
기분도 안 조은데 하.....
-
택시기사들 특) 1
100원 더 벌려고 세워달라는데서 안 세워주고 꼭 좀 더 감 이씨발것들이진짜
-
사범대 가서 cpa 준비 가능한가요?
-
뭐가 더 어려움?
-
22번만 푸는데 좋은듯
-
국어 사설 4
평가원은 98 밑으로 내려간 적이 없는데 왜 사설만 보면 이렇게 말아먹지 이래도 이게 내 문제인가
-
기대 기숙 2
시대 기숙도 친목 심할까요? 기숙 특성상 어쩔 수 없다고 봐야하나 ㅜㅜ
-
눈이랑 코성형이랑 턱이랑 광대만 깎으면 됨
-
24수능 샤프 뭐냐
-
고이난아
-
홍익대 합격생을 위한 노크선배 꿀팁 [홍대25][돈까스맛집] 0
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
옛날 합격증이에요…. 누가 뱃지 하나 달라고 하길레…..
-
24는 휴학 확정인곳 꽤 있는걸로 아는데 25는 잘 모르겠네요
-
얼버기 3
ㅇ
-
지방 평준화 일반고에서 학종으로 중앙대 AI학과 진학 힘들까요? 2
원래 전 공부는 뒷전이고 친구들과 놀거나 게임만 하는 그런 학생이었는데 1학년...
-
딱히 대치키즈들처럼 평균 순공 12시간 찍고 그러진않았는데 입시드라마 보면 속 존나...
-
지금 최초합한 곳 하나 있고 추합 두개가 확정적으로 될 예정인데 추합1은 1차추합에...
-
언제죽ㄱ지
-
꼬리까지바싹튀겨서
연속이면서 동시에 좌미분계수와 우미분계수가 같아야되요
우선 답변 정말 감사합니다^^
근데요 어떤함수가 미분가능하다라고하면...
좌우미분계수=함숫값 이건아니죠?
제가 물어보고 싶었던건이건데 정작 이걸질문못했네요ㅠㅠ
둘다요 ㅎㅎ
연속이면 함숫값이 같아요
답변 정말 감사합니다^^
근데요 어떤함수가 미분가능하다라고하면...
좌우미분계수=함숫값 이건아니죠?
제가 물어보고 싶었던건이건데 정작 이걸질문못했네요ㅠㅠ
네 아니에요
3x가 x=2 에서 미분가능하잖아요?
함숫값은 6이고 미분계수는 3이죠
이거처럼 다를수도이지만
x=1 에서 함숫값3 미분계수3 처럼
같을수도있어요
감사합니다^^
연속이라는 커다란 벤다이어그램안에 조그만한 미분가능 이라는 벤다이어그램이 존재합니다
일단 답변감사합니다^^
그건알고있어요ㅎ
좌미분계수와 우미분계수가 같으면 됩니다. 연속임은 굳이 확인할 필요가 없습니다.
(좌미분계수와 우미분계수가 같다면 연속이라는 전제가 깔려있기 때문입니다)
허졉한 질문에 답변감사드립니다^^
포카침님 수비에대해 쪽지드렸어요..
함수가 미분이가능하다는걸 가장 매끄러운 곡선이구나 하는 느낌을가지세요 일단
극한값이 존재한다는것은
좌극한과 우극한이같다는겁니다
그림으로말씀드리면
---------o------------
o부분이 함수값이라고하면
함숫값은존재하지않아요
연속이라면 당연히 극한값은 존재하지만
극한이존재한다고해서 연속이 될수도있고 아닐수도있다는거에요
o이라는점에서 좌측으로 아주미세하게 이동한 좌극한과
우측으로 미세하게 이동한 우극한은 같아요 o-0 = o+0
연속은
이제 a-0 = a = a+0
----------•-------------
이런느낌이구요
연속은 쉽죠??
그냥 곡선이 매끄럽던지 날카롭던지에 상관없이 보기에 연결이되잇으면연속인거구요
좌극한값과 우극한값이같을뿐만아니라 함숫값도같아요
그리고 미분계수가 존재한다 라는건
좌미분계수와 우미분계수가같다는건데요
미분계수라하면 특정한점에서의 접선의기울기를의미하는데요
\ /
\. /
\. /
\. /
•
이그림에서보시면
•이라는점의 좌미분계수
와 우미분계수는 확실히틀리죠?
이해가안가신다면 연필로 그려보셔요 ㅎ
극한존재<연속<미분가능
이런식으로 되네요..
그림못그려죄송해요