공간좌표상에서 직선끼리의 거리에 대해 얘기좀 하실분
게시글 주소: https://ys.orbi.kr/0003826294
1, 평행한 두 직선사이의 거리 구하기
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버기 0
좋은 아침
-
성대 복전 0
확정 점수는 아니지만 가채점 낙지 기준 성대 사회과학이 6칸, 인문과학이 7칸 정도...
-
기상 완료
-
춥고배고프다 2
밥줘...
-
이젠 이시간까지 안자고있네ㅋㅋ
-
밤샘해버렷네 4
으으
-
합격생중에 수리 틀린 경우도 있나요?
-
미친짓이겠죠?
-
심심해서 2
수분감 샀음 공통+미기확 전부 다 심심할 때마다 풀어야지 즐겁다!
-
김동욱쌤 기출 0
일클 + 연필통 하면서 기출까지 같이하려는데 추천하는 기출문제집있나요?
-
아이디드리면핑까해드립니다.
-
셋 중에 누가 제일 노래잘함?
-
삼반수에 대하여 1
(요약 있습니다!) 이건 제 얘기가 아니라 제가 아주 아끼는 친구 얘기입니다 (저는...
-
표점 뭐 134임? ㅋㅋㅋㅋㅋ 납득하기 어려운데
-
지금 일어난 게 아니라 아직 안잔 거임.. 몇주 뒤에 유럽여행 가는데 강제 시차적응 on
-
딱알았다 1
누누로는 골드탈출못한다 내가 무언가 해야하는구나
-
컨설팅 받을까요 2
올해 삼수째고 목표하던 대학 라인이 간당간당한 성적이라 작년 이맘때쯤보다 더...
-
얼버기 2
는 아니고 술먹고 이제 집들어가는중 헤헤
-
잔다 2
르크
-
패턴 정상화 시킨다
-
이러면 무슨 의미가 잇음
-
이주비용 다 갚고 집짓고 그냥 영락없는 한국인이네
-
얼버기 9
-
세상 답도ㅜ없이 문과스런 절 데려가주실 대학은요
-
제가 중학교 과정까지만 들어있고 고1 과정은 구멍이 많아 다시 해야하는 완전...
-
알맹이콘
-
제 재수삼수 최대의 적은 휴대폰이었음
-
잠이 안오뇨 1
인생 망햇뇨
-
기숙학원 사정상 못 가게 됬는데 혼자 어떻게 공부해야 할까요? (걍 과외 구해서...
-
제발. . . 지금 다니는 학교 뜨고 싶어요 ㅠㅠㅠㅠㅠ
-
집에서 독서실 다니면서 독재했는데 6월인가 7월쯤부터 풀어져서 새벽에 유튜브로 예능...
-
안녕하세요 예비고3 07입니다 원래 계획대로라면 2-2학기 내신때 다니던 학원에서...
-
했을 때 환산점수가 진학사랑 너무 차이가 나는데 대학교 그걸 믿어야 하는건가요?...
-
이젠 미적 80이 2일지도?가 되면 어떡하노 ㅆㅂ
-
사람으로 돌아갈 시간이다
-
주말에 좀 쉬어야지
-
그러기에는 늦었나.. ....?
-
ㅇㅈ 10
-
푸흡 전 내일을 위해 자겠습뇨 푸히히
-
그냥 사람들이랑 부대끼는게 재밌어서 하는거임 근데 오늘은 좀 재밌게 즐기긴 한듯...
-
정의는 언제나 승리하니깐 어쩔 수 없나
-
잡 2
니다. 오늘은 내일을 위해 일찍 잠
-
아니 ㅅㅂ
-
암튼 개꿀
-
슬슬나가볼까 1
어디를 가볼까요~~
-
덕코가 실효성이 없으니까 생긴문제임
-
애니 봐야하는데 하루종일 마크만 할거 같아서..
1-방법 1에서 두 점 사이의 벡터랑
직선의 방향벡터랑 수직이라는 보장이 없지 않나요?
-------o--------------
-----------------o----
이런 경우에요(o가 점)
1-방법 1에서 두 점 사이의 벡터랑
직선의 방향벡터랑 수직이라는 보장이 없지 않나요?
-------o--------------
-----------------o----
이런 경우에요(o가 점)
그니깐 수직인경우를 구할라고 내적해서 0일때 관계식을 구하는거자나여 수직일때 두점사이거리가 직선의 사이 거리니깐요
아아 그 소리였군요 ㅋㅋ
도서관에서 하나 알려드릴게요. 기대하셔도 좋음
안녕하세요, 저 포만한에 포그슨입니다 ㅎ
네이버에 '공간 두직선 사이 거리'에 대하여 검색하다가 이 글을 보게됬어요.
GeonuPark님의 방법이 궁금해서 오르비에 가입까지 했네요 ㅎㅎ
죄송한데 시간나시면 어떤건지 알려주실수있나요?! ㅎㅎ
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=3735670&sca=&sfl=mb_id%2C1&stx=jsrang
2번 질문에 대한 답은 링크로 대체합니다.(뒷부분만 읽으셔도 될듯)
위에 쓰인 방법도 맞습니다. 링크는 좀 다른 풀이입니다.
2번에서 윗분님이 링크걸어놓으신 글에서 나온 "평행하지 않은 두 벡터의 수직인 벡터"를 구하는 테크닉을 이용해 두 직선에 수직인 임의의 벡터 h를 구하고 두 꼬인위치에 있는 직선위의 임의의 점 아무거나 편한거로 잡아서 두점 이은 벡터를 k라고 하면 |k·h|/|h|를 하면 두 꼬인위치에 있는 직선의 거리가 나옵니다. 근데 ebs에서만 써먹어봤지 기출에서는 쓸데가 없었다는ㅋㅋ
0. 두 꼬인 직선의 직선의 방정식에서 각 뱡항과 각 지나는 점의 좌표를 안다면
1. 두 직선에 수직인 방향을 구하면 최단거리가 되는 선분의 방향이 될거에요
2. 이걸 축으로 하고 처음의 두 직선을 헬리콥터 날개처럼 돌리면 평행인 두 평면이 나와요 최단거리와 두 평면사이의 거리는 같을거에요
3. 수직방향과 지나는 한점으로 평면의 방정식을 만들고 나머지 한점과의 거리를 구하면 최단거리를 구할수 있어요