행렬 진위 판정 문제
게시글 주소: https://ys.orbi.kr/0003378958
A B 는 이차정사각행렬 이며 (AB)의 제곱 = A 의제곱곱하기B의 제곱 이고 A의 역행렬이 존재할때
B*A 역행렬= A역행렬*B 이다
좀 풀어주세여 ~ 맞으면 맞고 틀리면 왜 틀린지 이유랑 풀이과정도 적어주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지역별 학령인구 수에 비례해서 학생 선발하면 역차별 아님? 0
안녕하세요 최근에 논란되었던 지역별 비례선발제를 바탕으로 에세이를 쓰고있는...
-
07인데 내년에 수시쓰면서 정시도 같이 준비하려고합니다. 2학년 물화지 들어서 물리...
-
뭐가 더 어렵다고생각하시나요?
-
시팔무슨 과잠입고 슬리퍼신었다고 따로불러서 기합주더라 수업한명 늦었다고...
-
아니 피지컬은 작년보다 훨씬 오른것같은데 작수보다 백분위 8떨굼 미적 계산량...
-
ㅆ멸치 ㅇㅈ 5
-
지금 휴대폰은 갤s23+쓰는 중이고 자취하면서 독학재수중입니다. 야동>커뮤>유튜브...
-
3점의위력은강력하다 평가원은30번이나 3번이나거의뭐똑같이본다는것임......
-
1번 문제 정답 5번> 가채점엔 4번으로 돼있음.
-
이거 벽에 붙여놓고 공부했었는데 졸다가 이거 벽에서 떨어져서 내 어깨 위에 붙는거...
-
탐망이 많이 보이네
-
08 정시 0
수학 천재임.
-
사탐런? 0
지구 4 5 6 왔다갔다 하고 내년에 수학에 시간을 많이 할애해야 할 것 같은데...
-
에라이
-
계산 복잡 0
이 나한테는 제일 잘 맞는 거 같다 냥대야 어떤 계산을 내도 받아들일 테니 제발...
-
학교를 안 나가서 엌
-
국어 : ... 수학 : 드릴(드), 샤인미, 설맞이, ... 영어는 기출이나 풀고...
-
그 캐릭 이름을 모르겠음
-
나같은 사람있나 5
공통 준킬러 2개빼고 60분컷.. 흑흑
-
보기만 해도 머리가 지끈거리는...
-
ㅈㄱㄴ
-
안씻는 물스퍼거 300명만 스나하면 되지 않을?까
-
수과탐 백분위 97 98 96 vs 99 98 82 2
뭐가 더 높아요?
-
이 늘어날 것이라고 보시나요? 제가 알기론 수의대에 경우 건국대를 제외하면 사탐...
-
목이 되게 길쭉길쭉하심
-
연대 미래 의예 0
수학 1번 1-1 -27/25, 1-2 71/75 맞음?
-
라인 어디 정도 일까요? 그리고 스나 지른다면 어디까지 지르는 게 좋아보이나요?...
-
나도 뱃지 받고싶어..
-
현우진 드릴 4
인강 꼭 필요한가요? 답지만 보고 공부 가능한가요? 수분감은 해설지랑 강의랑 차이가...
-
고서한
-
확통이 개꿀통인거같음... 선택과목 만점 아닌 이상 유불리가 없다<<<응시자 수가...
-
가>나>다 순임? 만약 3개다 합격시 선호도 아니면 군은 상관없음?
-
과탐 5,6등급 맞아도 과탐만 받는 메디컬 가는거 아님? ㅋㅋㅋ
-
언매-공통만 틀린 92 화작-공통만 틀린 94or95 수학(선택과목 어쩌구저쩌구...
-
물리 1년동안 교육청평가원 합해서 3개 틀렸는데 나만 이런 게 아니고 상위권 표본...
-
손녀도 할머니가 되었네요
-
그냥똑똑이가되고싶었다
-
물1 안고였다 5
올해수능 50점받기 쉬웠다. 그러니 다들 물1을 고르도록.
-
질문 ㅠㅠ 8
예기치 않은 이별이 도대체 뭔가요 이별은 다 예기치 못한거 아닌가요ㅜㅠ? 1번이랑...
-
ㅈㄱㄴ
-
두견새는 0
고전시가에서 두견새 나오면 다 슬픈 새로 보면 되나요?
-
작년에는 목에 칼이 들어와도 여대는 절대 안된다 였는데 공학공대 다녀보니까 절실하게...
-
내년에 칸타타님 컷 예측 안할듯 ㅋㅋ 올해만큼 물어뜯었던 해가 있었나..
-
얼마나 행복할까 힘든 시기만 지나면 돈 잘 벌고 명예 있고 결혼연애 시장에서도...
-
17 19빼고 나머지 다맞아도 2등급인데 생1 하겠다는 사람이 많네요
-
이거 괜찮음? 4
책 샀는데 배송이 안 와서 오늘 유빈이로 쓸거임
-
패스 8일남았노
A약분해보면 (AB-BA)B=O ----> AB=BA ?? 를 진위판정하는 문제와 동치입니다.
이는 거짓입니다. B=(0 1 // 0 0), A=(1 0 // 0 0) 생각해보시면 됩니다.
이미 님 말씀대로 A 의 역행렬은 존재해요
사실 학교에서 처음풀때 (AB)의 제곱 = A 의제곱곱하기B의 제곱 -->는 AB=BA
라고 생각하고 풀었고 제 친구들도 그렇게 풀어서 답이 잘못된줄 알았는데,
이게 syzy님이 동치라고 제시한걸로 이해하니까 정말 쉽게 이해되었네요
고마워요 ~~
A =( 0 1 / 1 0 ) B= (1 0 / 1 0) 반례요 틀렸어용.
문제를 보자마자 반례가 떠오르는 경지까진 안가서 그런데,..
반례 말고 다른 방법은 없나요?
더군다나 시험에선 떨려서
반례로 풀어야지 조차도 생각이 안나는데ㅠㅠ
syzy님 반례는 A가 역행렬이 없어서 안될것같아요.
아 그러네요
ㅋㅋㅋㅋㅋ참인거같은데용 첫번째 조건 때문에 교환법칙이 성립한다고 할때 그 문제에 양쪽에 A를곱하면 A곱B곱A역행렬=B이고 교환법칙이 성립하니까 A랑B랑
자리바꾸면 B곱A곱A역행렬이니까 B만 남으므로 성립
제바류님도 제가 처음풀때 한 실수를 했네요 ㅠㅠ
위의 첫번째 조건은 교환법칙이 성립한다는게 아니에요 반례가 있죠
그리고 이것을 전제로 풀어서 답이 맞다고 나온거니까
잘못 푼거에요
참고로 (AB)의 제곱 = A 의제곱곱하기B의 제곱 -->AB=BA 이다
의 반례는 A= (1 0/ 00 ) B=( 0 0 / 1 0)
이에요
(AB-BA)B=O --> AB-BA=O ? 가 참일지 거짓일지 따지는 것인데,
일반적으로 CD=O 이라고 해서 C=O는 아니니까 아마 위 명제도 거짓이 아닐까 일단 의심을 합니다.
그러면 (AB-BA)B=O 이고, AB-BA=O는 아닌 예를 찾기 위해, B를 최대한 O에 가까운 걸로 놓아봅니다. (그래야 좀 더 유리하니까..)
B = (0 1 // 0 0)으로 놓고, A = (a b // c d) 로 두시면
AB-BA = (-c a-d // 0 c) 이고
(AB-BA)B = (0 -c // 0 0) 인 것을 금방 계산할 수 있습니다.
따라서, c=0으로 두시면서 a-d =0이 아니게 하면 됩니다. 즉,
A = (a b // 0 d) , B = (0 1 // 0 0)형태면 반례입니다. (단, A의 역행렬이 존재한다는 조건 때문에, a,d 둘 다 0 이 안 되는 범위에서 고르면 되겠군요.)
대단하네요 이런생각을!!! ㅋㅋㅋ
제가 본것중 젤 논리적인 반례 찾기인듯 ㅋㅋ
감사합니다~~
ㅎㅎ 고마워요. 위에 막 실수 해놓고 그래서 죄송해요~