자작문제
게시글 주소: https://ys.orbi.kr/0003232910
아쉽게도 제가 답을 적어놓은 종이를 잃어버려서...풀이를 구합니다^^;
형식은 수능문제지만 수능에 나올 만한 문제는 아닙니다.(한 문제에 너무 많은 걸 물어보므로)
고등학교때 경우의 수 구하는 문제가 있었는데 그걸 약간 일반화시켜 수열화해서 만들었던 걸로 기억합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뱃지 얻는법 좀 0
대학 빼고 다른 뱃지는 어케 얻음?
-
편입티오 말안되네 진짜 ㅋㅋㅋㅋ 저거 뚫을능력이면 연고논은 걍 매년 합격일듯 올해...
-
엘리베이터 타다가 틈에 빠질뻔;
-
맞팔하실분 3
아님 이미 팔로우중인데 내가 팔로우를 안했다 하는 분들도 ㄱㄱ
-
이렇게 다녀올까 3
-
들을려고 하는데 어렵나요?
-
ㄹㅇ 제가 그랬거든요 수능 날 이렇게 뒤통수를 쳐맞을 줄은... 단어 좀 꾸준히 외울 걸
-
귀엽네 ㅋㅋ 8
확 그냥 마 잡아무뿔라 마!
-
공감도 지능이다 0
이 말이 요즘 많이 와닿는다
-
국어만 고정 1이어도 삼수까지는 머리 박아도 된다고 생각함 그만큼 다른 과목에 비해...
-
옆사람도 계속 손 부채질하고 옷 잡고 펄럭거리고 있음
-
혹시 모르니까 원광대랑 전북대는 다시 팔 걸어놓음 내일 면접이네 하
-
면접 전날에 서울 올라가서 면접학원 들르려고요
-
이제 슬슬 할 때가 되었죠 잡담 태그 잘 다는 착한 오르비언이 좋습니다 저도 잡담...
-
썸네일 도긩쌤 뒤에 불꽃 있으면 그 편은 꿀잼 예약임
-
제가 다른 과목은 인강을 들었어도 수학은 딱히 인강을 들어본 적이 없고 동네...
-
ㄱㄱ
-
ON 3
IN 치지직
-
나이도 먹었는데 우와 대단하네요 이익을 위해서라면 뭐라도 해보겠다는 건가.. 근데...
-
좋아하지 않는데 사귀면 10
그 사람에게 미안하지않남........ 어차피 결혼은 아니니 알빠노 마인드임?
-
편입 티오 늘었다고 편입판 작년부터 수험생 대거 유입됐는데 저거 어케 뚫음..?...
-
《사랑과 거짓말》 국가에서 만 16세가되는날 결혼상대를 정해줌
-
예과생 + 거의 매일 시간 꽉채워서 과외 + 매우 높은 수능 성적 아니면 생활비 다...
-
추천 좀요
-
텔그나 진학사에 설대식 변환점수 내신반영된거?? 텔그는 된거같던데
-
지금까지 평가원 혹은 수능 성적 훑고 가보세요
-
서울대식 416.2 설수의 되나요?
-
에피 중 꼴찌 1
그건 바로 나다. 국포자이기 때문이다. 국어 지문 볼 때마다 글이 안 읽혀서 때때로...
-
부산 엄청 머네 9
무슨 7시간이나 걸리냐 엄...
-
둘다 기계 썼고 텔그에서 99 89라 해서 안갈려다가 낙지에서 6칸 5칸 나와서 좀...
-
언매 미적 생명 지구임 91 91 3 95 92 3칸 동사 토익 증원 4칸 중앙대...
-
저출산 해결할려면 이것밖에 없다 학부모들 중딩때부터 결혼상대 알아볼듯
-
요즘 너무 무료함 유료한 거 추천좀
-
잘 자 3
오늘 열심히 살았다
-
글 만개 쓰기(현재 9020개) 어떤게 더 빡셀까? 둘다 해보고 싶긴한데 남은...
-
기하이는 기하하하 하고 웃어!! 기하하하!!
-
바램7일차 0
무언가를 간절히 바라면 그게 이루어진대요 지구 37 2컷 7일차
-
시험 몇주전에 교과서 좀 깔짝대다가 전날 밤새서 공부했는데 56점나오더라 시발.....
-
다들 놀러다니네 4
노다가도 못가는 내가 밉다
-
나 무슨 잘 못 함?
-
그럼 쎈b 안풀어도 되나요? 쎈독 같이 풀면 좋긴 할까요?
-
독서실에 아무리 사람이 몇 없다 해도 혼자 있는 것도 아닌데 자꾸 발 쿵쿵 거리고...
-
재수때 4-5등급은 최소 두 등급, 그 이상은 최소 한 등급으로 ”모든 과목“...
-
비상!!@ 11
17홀이 나왔어요
-
평소 가벼운 이미지랑 다르게 공감 되는 것들 좀 있음 1. 지금 내가 좋아하는게...
-
스카 가는동안은 가는동안도 고역이고 가을 겨울에 많이 해놓아야함
-
엄..
-
로 아는데 이거 이용한 알파메일들 있을려나
-
빠바잇
포함과 배제의 원리에서 a_n = 3^n - 2^n - 2^n - 2^n +1^n +1^n +1^n = 3^n - 3* 2^n +3
b_n = 3*2^n-1 (첫자리는 3가지, 그 다음자리부터는 항상 2가지 가능성)
c_n = b_n - 6 = 3*2^n-1 -6 (단, n>=2일때) (b_n에 해당하는 것들 중, 맨 앞 두 수(예를 들어 1,2라고 합시다)가 1 2 1 2 1 2 ... 이런 식으로 반복되는 유형만 제거하면 되는데, 맨 앞 두 수가 결정되는 방법의 수는 6가지이므로)
d_n 은 대충 생각해도 맨 마지막 자리가 1,2,3 중 약 1/3씩 분배될 것이라 알 수 있으므로(맨 앞자리도), d_n /c_n 의 극한은 1/3이 맞을 것입니다. 하지만 직접 d_n을 계산해봅시다. c_n 중에서 맨 앞자리=맨 뒷자리 인 것의 개수를 e_n 이라 하면,
1.. c_n = d_n +e_n (이 식은 필요는 없지만..)
2.. d_n+1 = d_n +2e_n
3.. e_n+1 = d_n
입니다. 2,3번 연립 -> d_n+1 =d_n +2d_n-1. 풀면(특성근 등등) d_n = u* 2^n + v*(-1)^n (u,v는 상수)
d_2 =0 , d_3 =6 을 이용하여 u,v를 계산하면, u=1/2 , v=-2. 따라서 d_n = 2^n-1 +2(-1)^n-1. 따라서 극한은 1/3.
풀이를 적은 종이를 잃어버려서.. 라는 멘트는 누구의 멘트와 비슷한데..ㅎㅎ
와우! 정말 잘 푸시네요. 이 문제는 사실 d_n을 구하는게 핵심인데, 이렇게도 풀 수 있겠끔 보기를 저렇게 만들었던 것 같습니다. 그래도 a_n~c_n은 굉장히 쉽게 구하셨네요ㅎ 라고 쓰는 중에 dn까지 구하셨네요! 대단하십니다ㅎ