접선의방정식 질문이요
게시글 주소: https://ys.orbi.kr/0002883838
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
눈 많이 오네 1
보기 너무 이쁘다..
-
햇빛쨍쨍이라고 ㅅㅂ
-
1,2월 알바, 토익 공부.시험 345월 학교 공부 6월 종강후 편입 공부...
-
제발
-
하늘이 맑은데
-
진짜 가고싶다 2
연대 경제 가고싶다 아!
-
진학사가 주식도 아닌데 ㅈㄴ 쫄리네
-
수능 등급컷 0
메가보다 올라간다 vs 내려간다 vs 거의 비슷할 것 같다
-
비록 2년간 1센치도 안 됐지만... 이대로 멈추면 160초로 살겠지만... 키가...
-
1년 일찍 진학하면 13
엠티는 포기해야 되나요 미자라 혼숙이 될지....
-
대형 눈사람 4
와오
-
혹시 이건 2
시베리아 기단의 변질?
-
해주세요 사랑해요
-
크지 않네요 여러 군데 돌아봤는데 다 비슷비슷함 그냥 취향차이라는 건가...
-
몇점일까요
-
삼수때 한번 오르비에 광고뜨는 곳에서 받았는데 (오르비로 결제했었음) 갔더니 이상한...
-
다음주 금요일은 이거보다 온도 ㅈㄴ 내려갈듯
-
사쿠라 치요 와 키타 이쿠요 는 유명한 인싸픽임 난 이만 운동하러 ㅂㅂ
-
우산 써도 눈이 안으로 들어오네
-
연대냐고대냐 6
연정외연로 vs 고정외고로 영어2에 수망이라 합격 확률은 비슷하게 나오네요
-
안녕하세요, 학교별 의대 면접 분석 칼럼 작성하고 있는 '의대합격 LTP'입니다....
-
합격예측 0
지금 표본 ㅈㄴ부족한 낙지는 암 의미 없지? 왤케 짜지 불안하겤ㅋㅋ
-
수능 채점 결과 D-8 16
모두가 해피한 등급 컷이 나오길
-
애플워치랑 안경 안 가져왓어
-
후
-
후
-
화작 1컷100 언매90 확 2등급블랭크 미85 기89 영어 7퍼 물 50 화...
-
중앙대 가능할까요? 수학때문에 어디 넣어야될 지 모르겠네요..
-
선임 중에 샤워실에서 후임을 향해 소변을 누는 사람이 있었음. 근데 그거 빼면...
-
별로 없어요..?? 질문자로서 쓰기만 해봤지 답변자로서는 처음인데 질문이 이렇게 없는게 맞나..?
-
내취향 여캐일러 4
-
왜냐면 재수하면서 이원준 김젬마 전형태 김동욱 박광일쌤 수업 들어봤어서 약간 어떻게...
-
공부야 말로 진짜 아무나 하는게 아닌데
-
제발 메가대로만 7
더 내려가면 나 ㅈ된다
-
샤워하다 소변 봐도 괜찮다?…의사들 "생산적인 멀티태스킹" 4
비밀이 아닌 비밀이 하나 있다. 많은 사람이 샤워하다 오줌을 누는 것이다. 샤워하는...
-
쓰레기통 없을 때 에르메스 쇼핑백같은 거에 쓰레기 담아서 들고다니면 나도 모르게...
-
수능때 10분 남음 근데 다른걸 망함
-
설연의대 정도 되려나
-
굿모닝 2
ㅎㅎ
-
저도 맞팔받아요 12
-
탐구는 작년보다 더 내려갔노
-
내가 "나는 말을 잘 못하는게 고민이얌..." 이랬는데 단체로...
-
독서같은 경우에 이원준t 듣고나서 이해가 안되는 부분 큐엔에이로 물어보기도 하고,...
-
그냥 공부하지 말고 유투브해 유투브 님들이 공부에 쏟는 노력 절반만 유투브에 쏟아도...
-
해커스 진단테스트 50개 중에 29개 맞았어요 타임어택이 수능 10배인 것 같은데..
-
고3때 하던짓 3
자습시간에 패드로 문제푸는척 하면서 원신 가챠돌리기 경제위기 온 스리랑카로 우회결제해서 싸게 현질
-
삐리빠라뽀?
누가 이런 엉터리를 가르쳐줬죠? 마지막 두줄..
F(x, y) = ax² + by² + cx + dy + e = 0
을 만족하는 자취 L 위의 점 (x1, y1)에서 L에 그은 접선을 구할 때 사용하는 일종의 편법입니다. 일반적으로 먹히는 건 아니고, 오직 위와 같이 주어진 꼴의 자취에서만 먹힙니다.
약간 대학수학을 사용한 증명은 다음과 같습니다. (물론 고등학교 과정으로도 증명할 수 있습니다. 다만 일반성이라는 측면에서 상당히 밀립니다.)
[유도과정] ∇F 가 F = 0 의 자취와 항상 수직함은 쉽게 알 수 있습니다. 따라서 원하는 접선의 방정식은
∇F(x1, y1) · {(x, y) - (x1, y1)} = 0
⇔ (2ax1 + c, 2by1 + d) · (x - x1, y - y1) = 0
⇔ 2ax1(x - x1) + c(x - x1) + 2by1(y - y1) + d(y - y1) = 0
⇔ ax1x - ax1² + (cx - cx1)/2 + by1y - by1² + (dy - dy1)/2 = 0
입니다. 이제 위 식에 F(x1, y1) = ax1² + cx1 + by1² + dy1 + e = 0 을 더하면,
ax1x + (cx + cx1)/2 + by1y + (dy + dy1)/2 + e = 0
이 되어 원하는 바가 증명됩니다. 예를 들어 질문하신 문제의 경우, F(x, y) = 2x² + 5x - y + 7 = 0 의 자취이므로, (x1, y1) 위의 점에서의 접선의 방정식은 2x1x + 5(x + x1)/2 - (y + y1)/2 + 7 = 0 이 됩니다.
이제 F(x, y) = ax³ + bx² + cx + dy³ + ey² + fy + g = 0 의 자취에 대하여 같은 논리를 적용해봅시다. 그러면
∇F(x1, y1) · {(x, y) - (x1, y1)} = 0
⇔ (3ax1² + 2bx1 + c, 3dy1² + 2ey1 + f) · (x - x1, y - y1) = 0
⇔ 3ax1²x - 3ax1³ + 2bx1x - 2bx1² + cx - cx1 + 3dy1²y - 3dy1³ + 2ey1y - 2ey1² + fy - fy1 = 0
⇔ ax1²x - ax1³ + (2/3)bx1x - (2/3)bx1² + (1/3)cx - (1/3)cx1 + dy1²y - dy1³ + (2/3)ey1y - (2/3)ey1² + (1/3)fy - (1/3)fy1 = 0
이며, 마찬가지로
ax1²x + (2/3)bx1x + (1/3)bx1² + (1/3)cx + (2/3)cx1 + dy1²y + (2/3)ey1y + (1/3)ey1² + (1/3)fy + (2/3)fy1 + g = 0
입니다. 따라서 3차식이 포함되어 있기만 해도 더 이상 같은 공식을 사용하는 것이 불가능함을 압니다. (결론은, 마지막 두 줄은 골룸골룸)
정...정체가......?
고수님임..
마지막 2개는 모르겠는데
위 4개는 2차곡선에서 사용가능한 공식이네요
y=2x^2 + 5x + 7
이녀석도 이차곡선이니 되어야 하는뎅.. 안 되나요?
sos님, 오래간만이네요..
마지막 두 줄 빼고는 음함수 미분법으로 하는게 고등학생이 느끼기는 더 나을 것 같네요. 종로교재에도 증명을 실어놓았고요.
참고로, xy 대신에는 (x_1 y + x y_1)/2 를 대입하면 되는데, 이것은 이차곡선의 회전변환에서 나오는 꼴이라 수능과는 상관없습니다
y=2x^2 + 5x + 7 도 당연히 됩니다
감사합니다 마지막두줄은 제가 미분해서 접선의방정식 구한후 정리하니 저렇게 유도되서 끼워넣은거에요.