접선의방정식 질문이요
게시글 주소: https://ys.orbi.kr/0002883838
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
9명모집이고 아직 14명 안들어옴 7등 8등 차이 0.01점 ㄷㄷ
-
신촌엔 대체 얼마나 커플이 많을까.. 에브리데이 히트데이일꺼야
-
으아아
-
원래 처음 재수 초반때 그 전해 화룡점정 풀면서 머리 깨졌었는데 0
갑자기 킬러가 없어졌어요
-
ㅈㄱㄴ 생12는 완전 다르잖아 내신으로는 했는데 둘다 수능으로는 어떤지 궁금...
-
대학교 1학년입학을 (1학년)2학기부터다닐수있나요? 0
서경대 모델연기학과합격하고바로군대가서 현재복무중입니다 (합격하고 바로군휴학해서...
-
1.쾌변을 눌 수 있게 된다 2.탐구시간때 화장실에서 큰일을 보고 와도 시간이...
-
솔직히 수학 너무 아까운데 진짜 올핸 감 유지만 해놓고 가봐야지
-
커피 마신게 잘못됐나
-
(현 재수생) 1월부터 재수결정해서 기출 마더텅 풀고있습니다 경기도 살아서...
-
비문학 인강을 한번도 들어본적이 없어서 그읽그풀과 구조독해가 있다는거 정도만 알고...
-
작년에 수특, 내신으로 하긴 했는데 기억삭제로 노베행 너무 늘어져서 배수진 친단...
-
맞팔할사람 10
맞팔해주때염 ㅠㅠ
-
2페이지까지 풀고 일자찍기하면 4등급 ㄱㄴ 2페이지 맞추는건 한달만 빡공해도 가능...
-
성대 지원한거 9
입학처에서 이름 수험번호 생년월일 쓰고 확인해봣는데 뭐 정보를 찾을수 앖다? 이러면...
-
말안돼 너무슬퍼
-
250107 기출2109나 속도 조절 shift + 부등호 다음 문항 ctr +...
-
옳게된 세상 9
정시 80% 수시 20% 수시 학교 오픈, 교과 일반전형만 유지 가나다군 폐지...
-
무난한거라고 보시나요? 아니면 소수과치고는 에바?
-
고민이넹
-
서강대 경영 0
점공 들어올수록 빡세지네..
-
갑자기 컷 내려가서 불합 극초 떴는데 그걸 어케 신뢰함 ㄹㅇ 그냥 운명인거지 그치그치
-
이번에 윈터스쿨 독학 기숙 들어가는데 유용한 팁 있을까요?
-
작년 6월 이후로 계속 정법 영업하고 다녔던건 사탄 맞고요 지금 시작하실거면 정법...
-
프사 바꿨어융 6
-
둘다 붙으면 일반적으로 전자임? 둘다 추합으로는 붙을거 같아서
-
ㅅㅂ미치겟네 4
흠 정병걸릴거같아용 금연의벽......
-
건망증 + 귀차니즘이 나를 막는다
-
그거 숫자에 따라서 등수가 좀 많이차이나던데
-
내일이면 안정화되려나
-
오르새t랑 양승진t 수2기출 어떤분이 좋을까요??? 0
고민 많이 되네요 각각 톡징이 어떤가요???
-
넣었음 눈이 넘 건조해서
-
전설의 2004 수능 미노타우르스가 있네 무슨 말을 할지 벌써 기대됨..
-
심찬우t처럼 읽을때 왜?에 집중하시는 스타일인가요?
-
경제X 사문X 세계사X 동사정법세지한지생윤윤사중에서 무슨과목 2개가 좋을까요..?...
-
과외해줘
-
셈퍼 점공 2
왜 시대점공계산기에 있는 셈퍼점공이랑 오르비에 있는 2025 셈퍼점공이랑 다르게나오죠?
-
전 맨날가서 1시간 하고 오는데 근육 빨리 붙이고 싶으면 얼마나 해야하나요?
-
고경제 651? 0
ㅅㅂ 몰카임?
-
죽음에 관하여 오탁번 1 왼쪽 머리가 씀벅씀벅 쏙독새 울음을 울고 두통은 파도보다...
-
한겨례가 칼럼써서 죽임
-
점공 관련 질문 1
점공 넣는거는 실제 그 학과에 지원한 사람들만 넣을 수 있는건가요?
-
제가 이상한건가요? 선생님이 자꾸 돌아다니면서 애들 하나하나 하는지 안하는지 계속...
-
조용한거임?? 소수과는 문자돌려도 왜 깜깜무소식이죠 자꾸 기대하게 만드네
-
1타 탈환하려는건가
-
ㅇㅇ
-
감사합니다
-
25% 겨우 채운 곳도 있다
누가 이런 엉터리를 가르쳐줬죠? 마지막 두줄..
F(x, y) = ax² + by² + cx + dy + e = 0
을 만족하는 자취 L 위의 점 (x1, y1)에서 L에 그은 접선을 구할 때 사용하는 일종의 편법입니다. 일반적으로 먹히는 건 아니고, 오직 위와 같이 주어진 꼴의 자취에서만 먹힙니다.
약간 대학수학을 사용한 증명은 다음과 같습니다. (물론 고등학교 과정으로도 증명할 수 있습니다. 다만 일반성이라는 측면에서 상당히 밀립니다.)
[유도과정] ∇F 가 F = 0 의 자취와 항상 수직함은 쉽게 알 수 있습니다. 따라서 원하는 접선의 방정식은
∇F(x1, y1) · {(x, y) - (x1, y1)} = 0
⇔ (2ax1 + c, 2by1 + d) · (x - x1, y - y1) = 0
⇔ 2ax1(x - x1) + c(x - x1) + 2by1(y - y1) + d(y - y1) = 0
⇔ ax1x - ax1² + (cx - cx1)/2 + by1y - by1² + (dy - dy1)/2 = 0
입니다. 이제 위 식에 F(x1, y1) = ax1² + cx1 + by1² + dy1 + e = 0 을 더하면,
ax1x + (cx + cx1)/2 + by1y + (dy + dy1)/2 + e = 0
이 되어 원하는 바가 증명됩니다. 예를 들어 질문하신 문제의 경우, F(x, y) = 2x² + 5x - y + 7 = 0 의 자취이므로, (x1, y1) 위의 점에서의 접선의 방정식은 2x1x + 5(x + x1)/2 - (y + y1)/2 + 7 = 0 이 됩니다.
이제 F(x, y) = ax³ + bx² + cx + dy³ + ey² + fy + g = 0 의 자취에 대하여 같은 논리를 적용해봅시다. 그러면
∇F(x1, y1) · {(x, y) - (x1, y1)} = 0
⇔ (3ax1² + 2bx1 + c, 3dy1² + 2ey1 + f) · (x - x1, y - y1) = 0
⇔ 3ax1²x - 3ax1³ + 2bx1x - 2bx1² + cx - cx1 + 3dy1²y - 3dy1³ + 2ey1y - 2ey1² + fy - fy1 = 0
⇔ ax1²x - ax1³ + (2/3)bx1x - (2/3)bx1² + (1/3)cx - (1/3)cx1 + dy1²y - dy1³ + (2/3)ey1y - (2/3)ey1² + (1/3)fy - (1/3)fy1 = 0
이며, 마찬가지로
ax1²x + (2/3)bx1x + (1/3)bx1² + (1/3)cx + (2/3)cx1 + dy1²y + (2/3)ey1y + (1/3)ey1² + (1/3)fy + (2/3)fy1 + g = 0
입니다. 따라서 3차식이 포함되어 있기만 해도 더 이상 같은 공식을 사용하는 것이 불가능함을 압니다. (결론은, 마지막 두 줄은 골룸골룸)
정...정체가......?
고수님임..
마지막 2개는 모르겠는데
위 4개는 2차곡선에서 사용가능한 공식이네요
y=2x^2 + 5x + 7
이녀석도 이차곡선이니 되어야 하는뎅.. 안 되나요?
sos님, 오래간만이네요..
마지막 두 줄 빼고는 음함수 미분법으로 하는게 고등학생이 느끼기는 더 나을 것 같네요. 종로교재에도 증명을 실어놓았고요.
참고로, xy 대신에는 (x_1 y + x y_1)/2 를 대입하면 되는데, 이것은 이차곡선의 회전변환에서 나오는 꼴이라 수능과는 상관없습니다
y=2x^2 + 5x + 7 도 당연히 됩니다
감사합니다 마지막두줄은 제가 미분해서 접선의방정식 구한후 정리하니 저렇게 유도되서 끼워넣은거에요.