부정방정식 질문입니다.
게시글 주소: https://ys.orbi.kr/00028363375
문제)두 정수 a, b에 대하여 x에 대한 이차식 x^2+(3a+1)x+2a^2-b^2이 완전제곱식이 되도록 하는 a, b의 순서쌍 (a,b)의 개수는?
-시발점 수학(상)
저는 이 문제를 풀때, 완전제곱식이 되려면 '2a^2-b^2'이 일차항의 계수의 반의 제곱이 되어야 한다는 성질을 이용해서 풀었습니다.
현우진 선생님께서는 위의 이차식이 완전제곱식이라면 ( )^2 형태이므로 ( )^2=0이라고 치면, 중근을 가질거니까 '판별식=0' 이라고 두고 푸셨습니다.
현우진 선생님의 풀이가 이해가 조금 안되ㅅ qna로도 질문드려봤지만 돌아온 답변은 '가정일뿐이다'라는 것이였습니다.
제가 궁금한 점은, 어떻게 =0이라고 가정하고 풀 수 있는지 입니다.
혼자서 이걸 이해해보려고 함수로 생각해봤습니다. y=위의 이차식 꼴의 이차함수를 말이죠.
그리고, 이차함수의 함숫값이 0인 경우를 생각해보니까, 현우진 선생님 풀이대로 풀어도 문제가 없다고 느껴집니다만, 이차함수가 x축과 만나지 않을 때도 있기 때문에 헷갈립니다...
명확하게 설명해주실 분 계신가요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
세상은 올바른 선택을 하는 것이 그 무엇보다도 중요하다는 것.
-
슬슬 자볼까 1
겉날개얻고 몬스터팜 만들었으니 꿀잠자러 고고
-
얼버기 2
인녕하세요
-
지금까지는 맞는말같긴함 작수때 언매미적물1지1으로 89 89 2 88 95 맞았는데...
-
워드마스터2000 끝냈고(3회독) 암기율은 80정도? 제가 단어가 약헤서 다른...
-
오늘은 뻘글 안 쓰고 일만 할 겁니다
-
힘을 좀 내줘 씨발럼아!!
-
영어 과외 질문 0
고등학교 3년 내내 모고 1등급은 놓친 적이 없고 수능은 97점 나왔습니다. 올해...
-
아침 먹으면서 쿵짝짝 쿵짝짝 하면서 토스어플 딱 까봤는데 떡락한 거 보고 나이스...
-
진단서 써줌? 기말 끝나고 링거 맞을건데 병원에서 진단서 써주는지 궁금함
-
군대 안가면 좋겠다는 말도 안되는 망상을 해본다
-
저 남르비예요.. 오해하시는 분들이 많으신 것 같길래
-
침대에 종이판때기 세워놨는데 자다가 내가 건드린건지 앞으로 넘어져서 이마를 강타당한 건에 대하여
-
하나 사고싶은데... 비싸...
-
얼버기 0
우헤헤
-
아 어제 할껄 4
비 오고난 후 추워질텐데 역시 할 일은 바로바로 해야 해
-
사실 출근안했고 아침먹는중임 가기싫다
-
이거 좀 답해줘 3
9시 수업있는데 원래 2시 수업도 있는데 싸강됨.. 귀찮은데 걍 모자쓰고 갈까??...
-
아학교가기싫어 6
비는 또 왜 오는건데ㅠㅠ 지금 결석할지말지 고민즁잉대ㅜㅜㅜ
-
헤헤
-
7시가 되어가기 때문입니다 파이팅
-
뻘소린데 0
요즘 물가에 질식할 것 같음 걍 날 죽여라
-
밤 왜 샜지..... 수시러들 암튼 존경함
-
일어나
-
쿠팡 힘들다 1
이걸 연속으로 뛰는 사람은 대단하네 ㄷㄷ
-
근데 그 시절이 너무 그리워 꼴에 첫 대학생활이라고 마음이 조금 부푼 것도 있었고...
-
결국 5수를 하나. 사탐런 진지하게 고민해봐야되나
-
트리플에스 끝!
-
동덕여대보다 더 처참함
-
죄는 없는데 죄책감생김
-
https://naver.me/5YFRHw2t 어디든 민주 한숟갈 올리는게 요즘 여대에서 유행인가봄
-
속보 0
우옹애
-
기상 완료 예비군 2일차 갔다오겟음 아...
-
일단 지방의대 바이탈과 교수들은 인서울로 많이 옮기거나 그만둠 지방의대 교수들이...
-
생활패턴 망했다 1
오전 7시 취침 오후 4시 기상 이게 뭐야 대체
-
김상훈T 0
독서 독해 방식이 어떻게 되나요? 그읽그풀 느낌이면 좋겟는데..
-
잠이 안와 씨바 3
나 자고 싶다고........ ㅅㅂㅅㅂㅅㅂㅅㅂ 어젯밤도 샜는데 왜 잠이 안오는데ㅜ
-
ㄱㄱ
-
기차지나간당 2
부지런행
-
진짜 잔다.. 2
다들 자요 빨리
-
으으
-
밤샐까.. 0
수면패턴 박살났는디 초기화나 시키게
-
양악하고싶다 0
-
선착순1명 18
가장 빠른 사람이라는 뜻
-
12시 이후부터만 ㅇㅇ.. 자야지이제
-
97점 99 76점 85 93점 1 45점 96 42점 96 언미생지 나는 이과지만 수학이 밉다..
-
에구구
-
18수능 국,수(가형),영,한국사,물2,화2,중국어 응시 각 원점수...
-
ㅇㅈ 10
마스크업으면무서웅
판별식을 쓰는 것은 방정식이라고 가정한 다음에 계산하는 거고요, 그래프를 이용해서 함수로 나타내는 것 역시 좌표평면상에서 y=0 (다른 말로 x축)과의 교점이 하나만 (실근은 2개, 서로 다른 실근은 1개(일명 중근)) 나오도록 만드는 겁니다. 둘 다 일종의 가정(if)입니다... 잘못 푼 것은 아니고요...
님이 접근한 이 식이 완전제곱식이 되려면 2차에서 1차항 계수의 절반의 제곱이 상수항의 제곱이 되는 형태로 푸는 것은 가정없이 가장 authentic하게 접근한 겁니다... 역시 이 풀이만 맞는 것도 아니고요...
수학은 관점에 따라서 자유롭게 변신할 수 있어야 합니다. 단, 그 변신이 논리적으로 잘못된 것이 없다는 전제 하에서요...
그런데 위의 이차식이 0이라는 값을 가질 수 없다면, 가정이 정당하지 않은 것 아닌가요?
가정이 정당하지 않은게 아니고요 완전제곱형태가 불가능하다는 결론이 나오겠죠... 실수체에서요...
방정식 꼴에서 완전제곱형태 말씀하시는 거죠?
( )^2=0 이 꼴이요.
예... 미지수가 포함된 방정식이라면 복소수체에서 따질 때에는 무조건 2차방정식의 근 2개는 존재하지만 실수체에서만 따지는 경우라면 있을수도 있고 없을수도 있습니다...
이렇게 가정해서 푸는걸 처음봐서 그런지... 익숙하지도 않고 별로 와닿지가 않네요ㅜ
아직도 이해가 안되요
수학 기법상 가장 광범위한게 행렬하고 방정식입니다... 식에서 성립하는 거면 방정식에서도 성립합니다. 방정식에서 성립한다고 식에서 성립하는 것은 아니고요... 이 말인즉슨 식에서 성립안하는 것처럼 보여도 방정식으로 놓고 보면 성립하는 경우도 존재합니다...
저 위에서 0을 가질 수 없을때는 완전제곱형태가 될 수 없다고 말씀하셨는데, 그렇다면 판별식=0을 활용할 수 없는 것이 아닌지요?
x^2 + 2ax + a^2-2a 이런 식이 있다고 하고 이게 완전제곱식이 되려면
1차항의 계수 절반의 제곱인 a^2 = a^2-2a이면 되겠죠... 그럼 a=0이 나오고 본식은 그냥 x^2이니까 성립합니다. 그런데 a가 0이 아니면 본식을 완전제곱식으로 만드는 a는 존재하지 않는거죠... 즉, 방정식으로 놓고 판별식을 쓰나 그냥 완전제곱꼴 변형을 하나 차이가 없다는 겁니다...
이제서야 생각이 났는데, 완전제곱식은 무조건 0이라는 값을 가지게 되있네요!
예를 들어 (x-a)^2이라는 식은 x=a일때 0을 가지듯이 말이에요.