함수의 극한 제가 이해고하고 있는게 올바른건지 검토좀요;;
게시글 주소: https://ys.orbi.kr/0002552687
lim f(x) = ∞
x->a
f(x) - 2g(x)
-------------
3f(x) + 4g(x)
의 함수와
1- 2g(x)/f(x)
--------------- 의 그래프는 f(x) = 0부분만 빼면 같은 그래프이다(분모와 분자에 f(x)로 나눔)
3+4g(x)f(x)
그런데 f(x) -2g(x)
-------------- 의 x->a 일때 극한을 이 식자체에서 구할려면
3f(x) +4g(x)
못구한다 그러니까 f(x)로 나누어줘서 식을 변형 해야한다
그런데 f(x)로 나누면 그래프에서 f(x)=0인 구간은 빠진다
하지만 f(x)가 x->a일때 무한대로 발산한다 그러니까 x에 가까운
언젠가 0보다 큰게 나타나게 돼있다.그러니까 x->a에서의 극한은 바뀌지
않는다 그러니까 식을 변형해서 풀어도된다
이말 맞는가요??? 제가 lim 이기호 옆에 나와있는 함수를 그래프차원에서
지금 이해하고 있어서 그래프를 계속 생각하게되네요;;;; 이러면서 만약에
다항함수가 아닌 그래프에서도 함수의 극한 나눈거 곱한거 생각도
겹치면서 머리가 복잡해요 ;;;;;;;;;;;;;;;;;
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘한거 0
화2 주스 풀기.......(이게 끝이라고.....p)
-
다군이고 210명뽑고 계속 6칸 뒤쪽이었음..
-
올해 사문 7
올해 사문 전망이 어떤가요 한지랑 사문 중에 고민중인데
-
힙합추천 2
오이글리-1에서8 이거 ㄹㅇ ㅈ됨
-
@orbihaku
-
오르비를 0
심심해서 일년만에 다시 하니깐 꽤 재밌다
-
추억여행 떡밥은 어떨까요?
-
한번만 봐주세요.. 11
앞으로 이런 사진 다신 안 올릴게요 제가 판단을 잘못했어요 미안합니다 살려주세요...
-
욕 많이 먹어서 2
오래 살거같아요..
-
옯서운 사실 10
내가 벌점 0이다
-
그것은 바로 저의 {풀떼기}임 들어온 김에 구경하세요
-
믿어요 여러분들
-
대체 왜
-
나는 병신호소인이었던거임...
-
오늘 애들끼리 밥 먹으면서 입시 얘기하다가 옯비 이야기 나와서 애들한테 모르는척...
-
혹시 르하임에서 재수 해보신분 계신가요? 아님 르하임처럼 고정석 없는 스카에서...
-
ㅇㅈ이라는 말은..
-
뭘본거야
-
- 5만원빵(~0원 조정 가능) - 저는 선택과목 언확사지1임 - 원하는 환산식...
-
좋은거봤다 4
줍줍
-
자취러에게 쿠팡보다좋은듯
-
국숭세단인가요?
-
노래추천 5
발라드면 좋긴한데 아무거나 본인 좋아하는 노래 추천좀요
-
정화하기 3
맨드레이크 아님
-
군대썰=간호사썰
-
차기 갤주
-
검정치마 - My Little Lambs (M/V) 2
콘서트 스탠딩 앞줄 티켓팅 성공 ㅅㅅㅅㅅㅅㅅ
-
지금 점공에 진학사랑 텔그에서 보인 인원들 빼고는 아무도 안보이면 대충 진학사...
-
이번 사고로?
a근방이 중요한거지 0만드는 부분을 조사하는게 아니자나여
극한 구하기위해 인정할 수 있는 범위내에서 함수를 근사시킨다고보면되지 않나요?
네 저도 그런거 같은데 변형된 식에서 예를들면 위에처럼 f(x)를 분모와 분자에 나눈거나
아니면 굳이 위에 예말고도 식의변형을 하는 식에서 변형 후에 식을 a근방조사하면 변형전이랑 항상
함수의 극한이 같을지가 이해가 안되서요;;;
방금 하신 말씀에 답이 있는거 같은데요
함수를 나눠줬다 했을때 분모가 0이 되는부분에서만 정의되지 않는거 뿐이지 나머지 부분은 원래함수와 같지않나요
예를들어
y=(x^2-1)/(x-1) 이 그래프와
y=x+1 그래프는 x=1에서만 차이가 있고 나머지 부분에선 같으니
x=1인 점만 제외하면 어떤구간에서도
둘중 아무함수를 써도 된다는게 제 뜻이었습니다
오~ 이해될듯하네요 근데 그러면 만약 위에식처럼 f(x)가 자세히 주어지지 않고 그냥 모호하게
f(x) -> 0 이런 함수로 나눠도 똑같을까요??
그럼요 어떤 함수든 간에 조사하는 범위내에서만 필요한거겠죠..
수학과 학생은 아니지만 답은 해드릴수가 있네요
감사합니다^^
제가 이부분 공부할때 이해한대로 설명해 드린다면
Lim x->a f(x)=k 에서 f(a)는 0이여도 나눗셈을 할 수 있지만, k는 0이면 나눌수 없습니다.
1/f(a)(이게 그래프겠죠)가 존재 하지 않아도 극한의 정의에 의해서 극한값은 존재 할 수 있기 때문입니다.
제가 이부분을 공부할때 이해했던 방식이라 틀릴 수도 있습니다.