학습이란 무엇인가? -2편
게시글 주소: https://ys.orbi.kr/00019535752
1편에서 가장 중요한 말은 이것이었습니다
똑같은 유형이고, 똑같은 문제이며, 똑같은 방법을 풀리는 똑같은 생각을 요구하는 풀이인데, 왜 앞에 쉬운 문제는 풀었으면서, 뒤에 어려운 문제는 풀지 못하는가????
저는 이 질문을 중심으로 여러 가지 경험을 되새겨보고 상상을 해 보았습니다.
제가 다른 예시를 들어보겠습니다. 제 친구중에 서울에 대학을 간 친구가 중고등학생을 대상으로 수학 과외를 하는데요. 재밌는 일화를 말해주었습니다
여러분 ‘약수개수 구하기 문제’ 기억나십니까? 중학교때 소인수분해를 배우면서 우리는 이 ‘약수개수 구하기 문제’를 공부합니다. 약수개수 구하기 문제는 아래와 같이 해결됩니다.
(출처 : ZUM 학습백과)
풀어쓰자면, 우선 어떤 수를 소수인 인수로 분해한 다음(소인수분해), 각각 소수들의 지수에 +1씩을 하여 곱하면 됩니다.
10을 예시로 들자면 (2^1) x (5^1) 이니까 (1 + 1) x (1 + 1) = 4 이므로 10의 약수개수는 4개입니다.
친구의 이야기로 다시 돌아와서, 친구는 중학생들에게 이런 식으로 소인수분해를 이용한 약수개수 구하기 문제를 설명해 주었습니다.
그런데 여기서 문제가 생겼습니다. 항상 학생들이 10, 20, 50 같이 아주 작은 숫자의 경우에는 약수개수를 구하는 데 문제가 없었으나, 5675674와 같이(제가 임의로 높게 잡은 숫자입니다) 큰 수에 대해서는 약수개수를 구하는게 불가능했다는 것입니다.
여기서 다시 중요한 질문으로 돌아옵니다.
똑같은 유형이고, 똑같은 문제이며, 똑같은 방법을 풀리는 똑같은 생각을 요구하는 풀이인데, 왜 앞에 쉬운 문제는 풀었으면서, 뒤에 어려운 문제는 풀지 못하는가????
여러분, 10의 약수개수를 구하는 문제나, 5675674의 약수개수를 구하는 문제를 서로 다르다고 보십니까? 숫자가 달라졌으니 이 둘은 별개의 문제이며 별개의 방법으로 풀어질까요?
당연히 아닙니다. 숫자가 크건 작건 그런건 상관없습니다. 만약 내가 약수개수를 구하고 싶다! 하면 어떤 숫자가 나오든 소인수분해하고 지수들을 구하면 끝입니다. 물론 작은 수의 약수개수는 상대적으로 그 수가 적으므로 구하는데 걸리는 시간은 짧겠지요. 하지만 큰 수의 약수개수를 아예 못 구한다는 것은 문제가 됩니다. 결국에는 풀어야 할 문제임에도 불구하고, 한 문제는(쉬운 숫자 작은 숫자) 쉽게 풀면서 다른 한 문제는(어려운 숫자 큰 숫자) 못 푸는 불상사가 생깁니다.
이것은 결국 그 중학생이 작은 숫자의 약수개수를 구할 땐 ‘일일이 그냥 세서 답을 구했’기 때문입니다. 10이야 뭐 그리 큰 수도 아니니까 저도 4초만 있다면 1,2,5,10 아 4개네! 라고 말할 수 있겠습니다.
결국 이 학생의 문제는 쉬운 문제는 쉬운대로 대충 끼워맞춰서 풀고, 어려운 문제는 쩔쩔 메고 아예 접근을 못한다는 것입니다. 만약 그 중학생이 쉬운 문제를 풀 때 제 친구가 가르쳐준대로 소인수분해를 이용했다면, 그 중학생은 큰 숫자 또한 막힘없이 답을 구할 수 있었을 것입니다.
또 다른 예시가 끝났습니다. 다음 편에서는 ‘알고리즘’, ‘시냅스’ 이 두 단어에 대해 알아보도록 하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현우진 0
예비 고3인데 수학 상 하 원 투 미적분 확통 전부 시발점 들었습니다. 이번...
-
5군데정도 지원했는데 한군데서 면접 연락오고 나머지는 지원서를 읽지도 않네 원래...
-
남은 6년동안 뭐해야함?
-
이제 좀 의대 붇여주면 안 되냐
-
형 지금 장난아니다.
-
기절한 다음에 금요일에 일어나고 싶다ㅠ
-
졸업합니다 드디어 아 이번에 대학 못 붙으면 재수하려고요
-
오늘의 명언 바람과 파도는 항상 가장 유능한 편에 선다. 0
the winds and waves are always on the side of...
-
인증해✊✊
-
나 초6땐 1
단원평가 80점받고 학교끝나면 우르르 놀이터가서 지탈하고 컵떡볶이랑 슬러쉬먹고...
-
좋아하는 유튜버입니다. 다른 재밌는 영상도 많아요
-
저런애들 겉만 멀쩡하면 아무차별안겪나?
-
3개월 다니고 때려침
-
꿈을 향해 달리기
-
여중 여고 남중 남고 캠퍼스처럼 같이 있는 사립재단이라 사실상 여기 중고등학교 쭉...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 돌아버리겠네 진짜 가산점 왤케힘드냐
-
지방살고있는데 돈은 문제없구요 어디가 더 좋나요?
-
초6수준 글쓰기가아닌데?
-
사실 네이버카페 포함하면 유치원부터긴함
-
나중에 뭔가 큰 인물이 될것 같다
-
라인좀ㅠ 6
내신 1점 후반인데 교과우수로 고대 안되려나..?
-
다들 급하게 돈 많이 필요할땐 어떻게 벌어? 쿠팡말고 추천좀
-
이원준쌤 커뮤픽 2
원준쌤 자꾸 커뮤픽이라구 하셔서 친구들이 이원준쌤 들을거라하면 커뮤니티하냐고 놀려요 ㅜ(하긴함)
-
싸이의 강남스타일이 나왔다 그때 태어난애가 오르비를한다고? 돌아가....
-
메가대로만 나오게 해주세요
-
정우성 첫 입장 '갑론을박'...비혼 출산 관심도↑ 3
[앵커] 배우 정우성이 혼외자 관련 첫 공식 입장을 내놓은 뒤 갑론을박이 이어지고...
-
얼마나 나요? 지엽적인 거 다 포함했을때
-
추우니 찰떡이군
-
여긴 잼민이들이 너무 많음;;; 힐링게임 하고프다
-
심심하면 답쓰고가주삼 작년에친사람은 예비번호도 써주심 ㄱㅅㄱㅅ
-
커뮤 7년차 1
07년생… 그게바로나야
-
화1보다 어렵네요
-
김승리 풀커리 0
수학 안 하는 사람이면 김승리 쌤 풀커리 안 벅찰까요?
-
팔걸어도되나요
-
3합 4(과탐 1과목) 몇 프로 예상함?
-
아닌가 한 2살때쯤 나왓나
-
탈퇴하려고봤더니 12
이거탈퇴어떻게하지
-
12년생이라고? 2
음 띠동갑인데 이게 맞나.. 난 아저씨인가
-
Image caption
-
통합사회과학 보고싶은 어린이들만 과탐하세욧~
-
뭔가 동질감 느껴지노 나는 군대월급으로 책 사려는데
-
https://orbi.kr/00039176755/90%EC%9D%BC%EC%9D%8...
-
나 릴스봐야돼 릴스도끊어야하는데
-
현역 위로는 다 (오르비식) 틀딱이라는 거였는데 시발 시간이 벌써 이렇게 되네 ㅋㅋㅋㅋ
-
선착순 10명 2
천덕만 주세요
-
메가스터디 일일 30제를 너무 잘써가지고 일일 30제랑 비슷한 공책이나 추천하는 공책있나요?
-
안돌아올수도? 재릅할 때 쓰고 싶은 닉이라도 적고 갈까
-
국어 0
구조 독해가 정확히 뭔가요? 김승리쌤과 강민철쌤이 주로 쓰신다고 들었는데 제가...
-
근데 하필 수험생 커뮤인 오르비도 한다고? 신기하구만
공감합니다
쉬운 문제를 통해 본질을 파악하고 일반화 시켜야 어려운 문제를 풀 수 있죠