물리좀 알려주셍 (문제)
게시글 주소: https://ys.orbi.kr/00016791667
물리좀 알려주셍
2,3좀 알려주셍
어케하는지 모르겠어엽
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저는 봉사하는 마음으로 자원하겠습니다
-
사실 전 아이브 데뷔부터 장원영보다는 리즈파이긴 했습니다만..
-
커피는 먹다가 머리가 너무 아파서 이젠 안먹으려고요… 너어무 졸린데 다들 잠 어떻게...
-
이제서야 구렁텅이에서 벗어난다
-
모바일겜 추천좀
-
ㅅㅂ
-
난 엄마 보고 밥이나 해! 라고 큰 소리로 외침
-
얼마나 잘봐야함? 작년 입결로따지면 의대제외하고 서울대수리과학부가 가장 높던데
-
유급이 있는가? > 없는 학교가 있음. (전국 모든 의치한수는 유급 제도를 구비)...
-
물2 어때요..? ㅋㅋㅋ....
-
어떤거가 더 공부양적고 쉬울까요 생윤이랑 같이할거에요 내년에 더표점높게 나올...
-
롯데월드 왔는데 2
줄 왤케 김;;
-
자기전에 비타민 B 비타민 c l 아르지닌 카르티닌 타우린 먹고 일어나서 카페인...
-
저 엿같은 정지떡밥 그만좀굴려라 수능 전에 굴리는건 그렇다했는데 수능 후에 굴리는건...
-
의사들이 한의사, 간호사도 못잡는데 정부를 어캐이김 0
의사가 진짜 강했으면 이미 우리나라 한의원 전부 문닫고 간호사는 무급전속노예로 전락했음
-
수업가기싫오
-
오늘부터 아니었나..
-
5%면 꽤 큰거같은데 언미사탐으론 힘들겠죠..? 내신 별로 안좋으면?
-
1/700 준것도 그렇고 2n으로 설정하는 문제 만든것도 그렇고 주관식 특성상 불안감 2배는 높인듯
-
https://orbi.kr/00070166548/%EC%98%AC%ED%95%B4%...
-
대석열의 알빠노 마인드가 좆으로 보이냐?
-
오랜만에 공부해서 그런데 강의하나듣고 진득하게 양치기하게요 과목은 수학이요
-
면허정지 안함 처벌안함 사직서 수리함 책임 안짐 면허정지 안함 엄정대처 안함 휴학...
-
눈때매 지금 출발;; 형 수술 받고 올게
-
갑자기 요 며칠새 느끼는중 슬슬 수능 이후의 공부들도 해야 할 거 같고 특히 CS...
-
경고 했습니다. 절대 지원하지 마시기 바랍니다. 그냥 서연고도 좋은학교니까 거기가세요
-
더욱 집중력이 향상되는게 아닐까 싶은 잔잔한 음악을 듣거나 껌을 씹거나 펜을...
-
정법 표점 뭐지 2
손해 안 본다며…
-
올핸 좀 정상화당한 거 같은데 작년에 물투화투 5050이면 이론상 수학 2등급도...
-
수업가기싫다
-
공대 가려면 수원대 공대가 그나마 나을까요? 가천,경기라인은 안될거같고 외대글캠 자연과들도 못가죠?
-
고경제 안정에 설대 스나 노리고 있을텐데
-
알려주새오
-
이제부터 랜덤탄다.
-
고2 교육청으로 본 3개의 수학 시험들중 다 합해서 3개까지 틀렸을면 가세요 아님...
-
둘이서 6병 마셧다 기억 안남
-
하던 거나 해야지.
-
설자전 가능? 1
자전 기준 411.7 가능할까요 ..?
-
오지훈 딱 대라
-
기차지나간당 6
부지런행
-
국어 언매 3컷 1
공통 -18 선택 -5 합쳐서 77인데 3컷 불가능할까요? 메가 기준으론 표점...
-
맛있더라 그래서 지금 피곤해
-
수학 노베 0
예비 고3인데, 현재 모고 수학 5로 노베입니다. 내신이 썩 좋은편은 아니라...
-
조오온나 피곤하네.
-
다 일어나서 글써
-
여기는 또리가 점령한다 !
글씨를 못알아보겠어요
다시올렸습니닷
그냥 해당 좌표축 기준으로 성분 분해만 하면 될 것 같은데요
1. 회전변환 쓰셔서 간단하게 성분을 구하시거나
2. 행렬의 연산을 잘 모르신다면 F크기에 각도만 잘 맞춰서 cos theta, sin theta 곱해주시면 될 것 같습니다.
각도 맞춰서 푼다고 할때 그냥 길이를 구하면 되는건가요?
2번에서 F y' =500/루트3 이고 F x' = 500 이렇게 되는거에요?
물리 개젬병이라 방법자체를 잘 모르겠어용 ㅜㅠㅜ
어떤 축에서 스칼라 성분을 구한다는 것은 벡터 분해를 해서 그 크기를 구하라는 의미인 것 같은데요.
각 축에다가 그냥 수선의 발 내려서 x, y 좌표 구하면 될 것 같습니다
흠..;; 잘 이해가 안되욥 ㅠㅠ
힘은 벡터입니다.
그럼 그걸 좌표평면 위에 올려 놓으면 두 점을 잇는 벡터겠죠?
그럼 시점(출발하는 점)을 원점에 놓으면 한 점을 가리키는 벡터가 되는데 그 점의 x좌표랑 y 좌표를 봅시당
여기서 x 좌표는 x 축에 대한 스칼라 성분(=좌표)이고
y 좌표는 y 축에 대한 스칼라 성분(=좌표)인 것입니다.
아아아아 그러면 2.은 x' y'가 직각이니 회전한다고 생각해서 Fx'=500 Fy'=0이 되겠네요?
결국은 해당 축방향 벡터(i, j)와 힘 벡터의 내적값인 거지요
.. .. 너무 어렵습니당ㅜㅜ 축방향 벡터와 힘벡터의 내적값이라면 두개를 곱하란 말인가용
일단 수직이면 0인건 확실하네용
물리라는 과목은 수학 특히 미적분과 기하와벡터라는 과목(고등 과정에 한함)과 큰 연관이 있습니다.
공부하는 과정에 있어서 물리만 공부하시기보다는 수학과 함께 공부하신다면 더 큰 시너지 효과를 내실 수 있으실 겁니다.
위에서 '좌표' 운운했던 말이랑 같은 말을 벡터의 연산이라는 관점에서 다른 용어를 사용한 것일 뿐입니다.
으아.. 알겠습니다. 혹시 가능하시다면 3번문제 풀이좀 해주실수 있을까요
이제 2번은 y'를 y축으로 x'를 x축으로 잡아서 풀었는데
3번은 그런식으로 풀수가 없네욥
두 축을 따로 보지 마시고 각각을 x축으로 봐서 x좌표를 2번 구하면 될 것 같습니다.
아 그러면 Fx= 500cos 60, Fy'= 500cos90 인건가요?
죄송합니다
다시 읽어보니 좌표라기보다는 '벡터의 분해'라는 관점에서만 보아야 할 것 같습니다.
좌표는 서로 수직인 두 축에 대해서만 보아야 할 듯 합니다.
그러니까 2번 문제에서는 좌표로 해도 된다는 것이죠
그런데 3번에서는 두 축이 수직이 아니므로 각 축에 평행한 선을 그어서 평행사변형으로 벡터의 분해를 한 후 분해된 벡터의 크기를 구해야 할 것 같습니다.