6평 21번, 심층분석 및 다항함수의 전개
게시글 주소: https://ys.orbi.kr/00012187583
21번의 수험생의 가장 상식적인 풀이에 대하여 알아봅시다.
---------------------위는 요약이고 상식적인 풀이를 정리해봅시다.--------------------
처음에는 단순히 인수정리로 f(x)=(x-1)p(x)라 둔 후, 정리하고 또 p(x)=(x-1)q(x)라 둔 후 정리해서 다음까지는 온 학생이 많았을 것입니다. (물론, 핵심이 느껴져서 f(x)=(x-1)^n p(x)라 뒀으면 그 자체로 훌륭한 것이고요.)
이렇게 논리적으로 f(x)를 구했는데 여기서 바로 두번째 극한으로 넘어가지 말고, 식을 직관적으로 이해하려는 시도가 필요합니다. 주어진 식에서 3이 무엇을 의미할까? 생각해보면 인수정리를 여러번 하면서도 느꼈겠지만 f(x)에서 (x-1)이라는 인수가 몇번 들어가 있느냐?가 극한값임을 파악할 수 있습니다. 항상 이렇게 직관적으로 느껴보는 것이 필요함을 명심하도록 하구요. 거의 모든 어려운 문제는 직관과 논리를 오가며 풀이가 진행됩니다.
처음부터 (x-1)^n이 중요하다고 생각한 학생은 훌륭하지만, 그렇지 못한 학생이라도 (x-1)^3을 구한 후에는 직관적으로 느낄려고 노력하는 과정이 필요합니다.
여기까지 왔는데, 함수의 극한값을 구할 때에는 모두 수렴하는 함수로 표현하는 것이 핵심입니다.
앞에 주어진 극한인 의 의미를 파악한 상태에서 이를 이용하기 위해 식을 변형해봅시다.
인데 의 의미를 생각하면, 아래와 같이 극한값이 한정되는 것을 알 수 있습니다.
물론 직관적으로 못느낀 학생이라면 또 g(x)=x p(x), p(x)= x q(x) 등 무한 인수정리를 반복해야합니다. 최소한 f(x)=x^m p(x), g(x)=x^n q(x)라 식을 세웠다면 조금이라도 삘이 온 학생이겠죠.
이므로 이 됩니다.
따라서 f(x)에서는 x의 인수가 1개 존재해야 하므로 f(x)=x(x-1)^3이고 g(x)에서 x의 인수가 3개 존재해야 하므로 g(x)=x^3이다.
-----------------------------------------------------------------
문제 풀이는 여기서 끝입니다.
-----------------------------------------------------------------
포인트를 몇가지 분석해봅시다.
사실 인수정리를 한 번쓰는 문제야 수도 없이 출제가 되었지만 이렇게 1번 2번 3번쓰고 거기에 미분까지 동원해야하는 문제는 이 문제가 유일합니다. 유사한 발상을 한 번도 경험해보지 않은 학생에게는 매우 어려웠을 것인데, 이 발상은 (x-a)^n의 중복도와 매우 깊은 관계가 있는 다음 유명한 극한에서 자주 나오는 발상입니다.
(x-a)^1으로 나온 문제는 많이 봤을것이고, 다음 문제 (x-a)^2 또한 조금만 어려운 문제집을 경험해봤다면 자주 봤을 문항인데요.
위 문제에서 인수정리에 의하여 f(x)=(x-a)g(x)이라 한 후, 대입하고 또 g(x)=(x-a)h(x)라 한 후 대입 그리고
두 식을 미분해서 정리해야 f'(a), f''(a)를 찾을 수 있습니다. 물론 f(x)=ax^n ... 이라 두고 푸는건 자유이긴 하나 일반적으로 증명하기 위해선 인수정리가 온당합니다. 이 식은 실제로 고려대 논술에서도 출제가 되었고 유명한 주제이기도 하니 한번 쯤 경험해두도록 합시다.
한가지 주제를 더 보도록 할텐데, 다음은 교과서에 있는 내용입니다.
교과서의 조립제법 내용인데 위의 내용은 거의 모든 교과서에서 탐구활동이나 문제로 출제가 되고 있습니다.
즉, 위를 보면 모든 다항함수는 f(x)=ax^3+bx^2+cx+d=p(x-1)^3+q(x-1)^2+r(x-1)+s 정도로 얼마든지 정리할 수 있음을 알 수 있고요. 솔직히 공부를 많이한 학생이라면 이정도는 눈에 들어올 것이고, 어려운 문제집에서 접해본 경험도 있을 것입니다. 그런 학생일수록 직관적으로
와 같은 식이 인수 (x-1)^n을 뜻한다는 것이 훨씬 더 잘 와닿을 것입니다. 평소에 많이 경험을 해보고 문제를 풀어보는 것의 중요성이고, 그 과정에서 직관력과 논리력이 모두 늘 것입니다. 위와 같이 발상이 되는 사람은
으로 주어진 식에 대입하면 b=c=d=0과 a=/=0이 매우 쉽게 관찰될 것이고, (x-1)이라는 인수의 중복도가 중요함을 즉각적으로 눈치챌 수 있을 것입니다. 그게 된다면 뒤 극한부터도 일사천리이고요. 여기까지 이해하고, 다음 기출문제를 봅시다.
이 기출문제에서 x->0을 보면 우리 기출을 많이 보고 열심히 풀고 결과까지 외운 학생들은 최저차항의 계수를 뜻한다는 것을 쉽게 알 수 있을 것입니다.
위와 같이 평행이동되어 응용된다 해도, 제대로 기출을 공부한 학생이라면 c=d=0, b=2가 바로 보이는 학생이 되면 좋겠죠. 즉 (x-1)^2을 인수로 갖는 것이고, 그 계수가 2라는 것이죠.
이제 이 글 http://orbi.kr/00012149457 을 다시 보면 왜 발상적인 풀이가 아닌지 느껴질 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저메추 받음 4
ㅈㄱㄴ
-
어딜봐도 최소 2스택 티오가 이게 뭐니 두창아?
-
똑같잖아
-
상권망한거같이보이던데
-
ㅠㅠ 1년전에 상,하 유형문제집 했는데 더 해야하나
-
강평 ㅋㅋㅋ
-
공통 5틀 언매 87점 공통 1틀기하 96점 영어 2 생1 47 지1 44 부울경 지역인재입니다 ㅜ
-
오뎅 하나에 800원이래
-
설의가 약빵이었던 것도 있긴 한데 암튼 신기하다
-
경제학과 가고싶어서 탐구과목을 경제로 바꿀까 생각중입니다 원래는 물지 했는데요...
-
얼버기 10
개운하당 이제 머하지
-
흠 1
미미미누 수학챌린지하네
-
사전예약하면 주는 수학 전자책 기출 트레이닝북 풀어본 사람 있나요...? 난이도 어느정도 됨?
-
선넘질받받아요 20
시간이너무많이남아서 심심해요 아무도질문안해주면 글삭튀할거임
-
20년 살면서 요즘만큼 똥줄타는 시기는 처음인듯 ㄹㅇ 하루에 한끼 먹을정도로 정신적 스트레스가 ㅈ됨
-
S대에 가고 싶다 11
-
ㅎㅇ 2
ㅂㅇ
-
2시간 동안 멍때리기 대회 중 ㅋㅋ
-
인강 너무 발전해서 대치동 현강이랑 인강이랑 차이 없고 자료라 해도 이미 시중에...
-
공부알바기타연습운동독서 다 해야되는데 머리깨지겟농
-
왜 처음에 물체가 붙어있으면 어떤 힘을 줘도 붙어있을까요?? 0
그냥 물리하다가 갑자기 궁금해져서요.. 정지해있는 두 물체에 마찰력이 없을때...
-
검색어 1위 5
사수.. 다들 꽤 연배 있으시구나
-
좋아해야해… 슬퍼해야해…?
-
자금모으고 라스트댄스 그 후엔 결과가 어떻게되든 수험말고 독립에 힘을 써야겠다...
-
답 찾는거만 하던사람한테 답을 찾지말고 무지성으로 우쭈쭈해달라 하면 어케함 ㅋㅋ
-
. 진짜 나 물리를 어지간히도 좋아했구나
-
모의지원자 점점 채워질때 마다 합격컷이랑 제점수가 가까워짐 역시 짠게 맞다니까.
-
겨울에 김현우+김범찬 수업들으려고 하는데 두 분 다 미적만 하시더라고요 공통을 아예...
-
경희대 앞 스타벅스 26
찾아오면나특정가능
-
공감지능도 지능이다. 10
T다 ㅇㅈㄹ하면서 공감지능 없는거좀 티내지말자 엠비티아이가 언제적인데 아오ㅆ
-
난 분명 양치 하고 가는데 계속 나보고 양치 꼼꼼히 하래
-
24수능 88 87 1 82 83 25수능 87 94 1 98 97 (가채점 메가 기준)
-
https://orbi.kr/00070126963 어제 메인도 보내고 좋네
-
저는 올해 강남대성 s2를 다녔습니다. 6월 강모 제외하고는 한번도 빌보드에...
-
미치겠다
-
왜이러지
-
질문받음 4
ㄱㄱ
-
주문할 때나 미팅이나 썸남?? 남친후보인 썸남?앞에서만 하이톤이지
-
고등반인데 통통이가 잘 할 수 있을까요.. 애들 모르는 걸 내가 못 풀면 어쩌지ㅋㅋㅋ
-
좀 쓴지 오래 되면 지울 수록 더 드러워짐 그래서 아 샤프심 때문에 번지는건가?...
-
목캔디 나만 좋아함? 10
왜 목캔디가 틀딱 취향이 된 거냐
-
저년차구요 수도권에서만 일해봤습니다 치대생활 수련필요성 치과계상황 이런거 물어보면...
-
하는거까지 외워야하는 사탐과목이 뭐뭐있나요? 쌍지 쌍사정돈가?
-
역시 명작은 명작 소재가 좀 자극적이여서그렇지 진짜 잘만든 영화
-
공부 시ㅣㅣㅣㅣ작
-
잠오네 2
.쿨쿨
-
영화보러감뇨 5
신남
사진이안뜨는것같은데요
혹시 보이면 댓글좀 부탁드려요!
갓갓
이 글 이해원하는분들은 지금이라도 http://atom.ac/books/3853 를 구입하셔서 3회독을 하시면
이런 글을 쓸 수 있습니다
머장님 1, 2 번째사진빼고 싹엑박뜹니다 ㅠㅠ
새벽부터 감사합니다 ㅋㅋ 이제 보이나요?
네네 ! 좋은자료 항상 감사합니다 !
갓갓..
21번 심층분석 ㄷㅅㅂㄱ
머장님 감사합니다!!
어 저도 sinx 나와서 x 곱해서 풀었는데 극한식에서 막 이렇게 곱해도 되나 궁금했는데 시중풀이가 저처럼 푼 풀이가 없었어요... 역시 해원님!!!!
30번 다항함수 풀때는 한완수 도움 많이 받았습니다 감사합니다
잘 푸셨네요 대단하세요 ㅋㅋ
윽 한번 이렇게 냈으니 올해 다시는 킬러로 이런 스타일은 못나오겠구만요
그것보다는 인수정리 등 논리적 계산을 거치면서도 그 식이 가지는 의미를 직관적으로 파악하려고 노력하는 과정. 킬러문제에서 항상 반복되는 직관과 논리를 오가며 풀이가 진행되는 과정 등을 파악하는 것이 공부겠죠ㅎㅎ
리미트가 분모 분자로 배분될때 분자가 0으로 가면 어떻하나.. 하는 생각에 쉽사리 배분을 못했는데 의문점을 한방에 해결해주시는군요. 감사합니다. 한완수도 호기심이 생기네요.
이해원모의고사 언제나와요?
(x-1)^n놓고 꽤 쉽게 풀었는데 끝나고보니 21이 가장 어렵단 말이 많더군요
딱 저렇게 풀어서 거의 6분컷...그리고 29번에서 털렸죠 ㅠ